







### AGENDA

- I. Wear Definitions & Test Methods
- II. Friction Definitions & Test Methods
- III. Additive Technologies
- IV. Application Examples
- V. Extreme Conditions Ultra Wear

### **RTP** WEAR DEFINITIONS

### Tribology:

The Science of the mechanisms of friction, lubrication, and wear of interacting surfaces that are in relative motion



### **Recall: Sliding surfaces** Wear = Loss of material over time

### **WEAR DEFINITIONS**

### Adhesive Wear Mechanism

- The primary mechanism for thermoplastic wear
- Characterized by transfer of material from one part to the other caused by frictional heat



### **RTR** WEAR DEFINITIONS

### **Adhesive Wear Mechanism**

- Caused by a hard material scraping or abrading away at a softer material
- Characterized by grooves cut or gouged into the surface
   Three body



### **RTP** WEAR TESTING

*Question:* How do you simulate an application and test a material for **long-term** wear resistance?

**Answer:** RTP uses **ASTM D-3702** wear test to quantify the amount of material a sample loses over time under specific conditions (pressure, speed, temperature)



### **RTR** WEAR TESTING



- RTP Company has six thrust washer wear testing machines in our wear lab located in Winona, MN
- Equipment is available to perform customer requested testing
- A test isn't always just a test
  Conditions matter!

### RTP RTP. WEAR TESTING WEAR TESTING Wear factor (K): Used to quantify wear resistance Standard PV = (Pressure · Velocity) Lower Value = Better Wear Resistance! **Conditions:** $K = W/(F \times V \times T)$ Conditions often used together to Steel thrust washer characterize severity of a wear environment • 40 psi · 50 ft/min Ambient temp **K** = Wear Factor: $(in^3 - min/ft - lb - hr) \cdot 10^{-10}$ or $(mm^3/N - m) \cdot 10^{-8}$ 2,000 PV = (40 psi · 50 ft/min) • 100 hour test **W** = Volume wear: $in^3 \text{ or } mm^3$ $\mathbf{F} = \text{Force: } lb \text{ or } N$ **V** = Velocity: *ft/min or m/sec* Typical testing done at 2,000 to 10,000 PV T = Elapsed time: hr or sec 100 Hour Test!

| RTP Wear Brochure             |   |   |   |    |   |              |                   | PV (psi*ft./min) Wear Factor (K) |            |                    |           |      |
|-------------------------------|---|---|---|----|---|--------------|-------------------|----------------------------------|------------|--------------------|-----------|------|
| Nylon 6/6<br>(RTP 200 Series) |   |   |   |    |   | Load<br>(Ib) | Speed<br>(ft/min) | PV                               | PV<br>(SI) | Wear Factor<br>(K) | K<br>(SI) | μk   |
| RTP 0200                      | - |   | - | -  |   | 8            | 50                | 2000                             | (70)       | 901                | (1811)    | 0.66 |
| RTP 0200                      | - |   | - | -  |   | 10           | 100               | 5000                             | (175)      | 95                 | (191)     | 0.91 |
| RTP 0200                      | - |   | - | -  |   | 40           | 50                | 10000                            | (350)      | 191                | (384)     | 0.60 |
| RTP 0200 SI 2                 | - |   | - | -  | 2 | 8            | 50                | 2000                             | (70)       | 639                | (1284)    | 0.54 |
| RTP 0200 SI 2                 | - | • | - | -  | 2 | 10           | 100               | 5000                             | (175)      | 181                | (364)     | 0.78 |
| RTP 0200 SI 2                 | - |   | - | -  | 2 | 40           | 50                | 10000                            | (350)      | 85                 | (171)     | 0.77 |
| RTP 0200 TFE 5                | - | - | - | 5  |   | 8            | 50                | 2000                             | (70)       | 957                | (1924)    | 0.61 |
| RTP 0200 TFE 5                | - |   | - | 5  |   | 10           | 100               | 5000                             | (175)      | 427                | (858)     | 0.77 |
| RTP 0200 TFE 5                | - |   | - | 5  |   | 20           | 100               | 10000                            | (350)      | 76                 | (153)     | 0.59 |
| RTP 0200 TFE 10               | - |   | - | 10 |   | 8            | 50                | 2000                             | (70)       | 341                | (685)     | 0.31 |
| RTP 0200 TFE 10               | - | - | - | 10 | • | 10           | 100               | 5000                             | (175)      | 171                | (344)     | 0.28 |
| RTP 0200 TFE 10               | - | - | - | 10 |   | 40           | 50                | 10000                            | (350)      | 156                | (314)     | 0.29 |
| RTP 0200 TFE 18 SI 2          | - | • | - | 18 | 2 | 8            | 50                | 2000                             | (70)       | 11                 | (22)      | 0.20 |
| RTP 0200 TFE 18 SI 2          | - |   | - | 18 | 2 | 10           | 100               | 5000                             | (175)      | 59                 | (119)     | 0.36 |
| PTD 0200 TEE 19 SI 2          |   |   |   | 18 | 2 | 40           | 50                | 10000                            | (350)      | 18                 | (36)      | 0.19 |

1 mmm



### WEAR TESTING



# I. Wear Definitions & Test Methods II. Friction Definitions & Test Methods III. Additive Technologies IV. Application Examples V. Extreme Conditions – Ultra Wear





### FRICTION DEFINITIONS

• In most non-plastic materials

• μ<sub>s</sub>>μ<sub>k</sub>

- Thermoplastics are somewhat unique
  - μ<sub>k</sub>>μ<sub>s</sub>
- May cause "slip/stick" Glide Factor<sup>SM</sup>
- If  $\mu_k >> \mu_s$  you may have squeaking

### **ASTM D 1894 "sled test"** • Coefficient of friction testing • Does not determine wear resistance • Can show slip/stick





### Cuestion: How does RTP measure wear resistance? Answer: ASTM D3702 Thrust Washer wear test; Wear Factor (K) Question: How does RTP measure Friction? Answer 1: ASTM D1894 "Sled Test" (Static and Dynamic Coefficient of Friction) Answer 2: Modified ASTM D3702 Thrust washer friction test. (Glide Factor<sup>SM</sup>)

### 6

### AGENDA

- I. Wear Definitions & Test Methods
- II. Friction Definitions & Test Methods
- III. Additive Technologies
- IV. Application Examples
- V. Extreme Conditions Ultra Wear



### **ADDITIVE TECHNOLOGIES**

### PTFE – Polytetrafluoroethylene (5-20%)

Workhorse additive – solid white powder

Compatible with nearly all thermoplastic resins

Relatively high loadingsCost fluctuation

Limitations:Fluorine contentDie plate-out











### ADDITIVE TECHNOLOGIES

### Silicone – Polydimethylsiloxane (1-3%)

- Boundary lubricant which migrates to the surface over time
  - Migration rate is viscosity dependent
- Excellent friction reducer
- Best in high speed/low load applications
- Limitations:
- Limited use in decorated parts
   Poor adhesion of paint or print inks
- Bad for electrical applications
   Can foul contacts











### **RTP** ADDITIVE TECHNOLOGIES



|                                 |          | PC            |                  |          | PA 6/6        |                  | POM      |               |                  |
|---------------------------------|----------|---------------|------------------|----------|---------------|------------------|----------|---------------|------------------|
|                                 | Unfilled | PTFE<br>(20%) | Silicone<br>(2%) | Unfilled | PTFE<br>(20%) | Silicone<br>(2%) | Unfilled | PTFE<br>(20%) | Silicone<br>(2%) |
| Specific<br>Gravity             | 1.19     | 1.31          | 1.19             | 1.14     | 1.26          | 1.13             | 1.41     | 1.52          | 1.40             |
| Tensile<br>Strength<br>(psi)    | 8,500    | 7,000         | 8,500            | 12,000   | 9,500         | 11,000           | 8,700    | 6,500         | 7,800            |
| Flexural<br>Modulus<br>(psi)    | 340,000  | 320,000       | 350,000          | 400,000  | 400,000       | 400,000          | 350,000  | 300,000       | 350,000          |
| Notched<br>Impact<br>(ft-lb/in) | 7.5      | 3.5           | 10.5             | 1.0      | 1.0           | 1.0              | 1.5      | 1.0           | 1.5              |

### **RTR** APPLICATION EXAMPLE

### Garage Door Opener Limit Switch

Requirements

- Dimensional stabilityGood strength and stiffness

Solution







Not Transparent! More on this later...

### **RTR** APPLICATION EXAMPLE **Drug Delivery Pen Components** Requirements Structural We • Good strength, dimensional stability, eliminate secondary lubricant application and no slip/stick Medical Solution(s) • Optimal Plastic "Friction Pairs" with low Glide Factor<sup>SM</sup> Fiber reinforced and internally lubricated PC or PBT Internally lubricated

- Maria

POM or PBT

## <image>

## <section-header> ADDITIVE TECHNOLOGIES PFPE – Perfluoropolyether Oil (< 1%)</li> Thermally stable up to PEEK processing temps Differentiates RTP Company from others Synergy with PTFE Specific gravity benefits Limitations: Limited effectiveness in amorphous resins Needs PTFE "kick" to deliver optimum friction reduction



# <section-header>

### 11

### Additives Reduce Clarity! PC with APWA+ PC with PTFE PC with PFPE PC with Silicone Natural PC





### **APPLICATION EXAMPLE**



### Water Meter Valve Requirements

 Dimensional stability, potable water contact - NSF listed

### Solution

Graphite lubricated PS and SAN













### RTP AGENDA

- I. Wear Definitions & Test Methods
- II. Friction Definitions & Test Methods
- III. Additive Technologies
- IV. Application Examples
- V. Extreme Conditions Ultra Wear

### **RTP** EXTREME CONDITIONS RTP **EXTREME CONDITIONS** What happens when your application has a **Ultra Wear Products Developed for** PV higher than 10,000? **Demanding applications High Temperature Excellent Mechanical Properties** Transmission Seal Off-Shore Drilling High Loads (500+ psi) Injection Molded Parts High Load Thrust Washers **Construction Vehicles** High Speeds Pipe Gaskets Oil and Gas Industry Chemical Resistance 100 ft/min tests 200 ft/min tests 10,000 PV: 100 psi 10,000 PV: 50 psi 25,000 PV: 250 psi 50,000 PV: 500 psi 50,000 PV: 250 psi







| / | RTP/ | EXTREME CONDITIONS |  |
|---|------|--------------------|--|
|   |      |                    |  |

|                            | Torlon<br>4301 (PAI) | Vespel<br>SP-21<br>(TS PI) | Rulon J<br>(PTFE) | Stanyl<br>TW371<br>(PA46) | RTP 1300 AR<br>15 TFE 15<br>(PPS) | RTP 4085<br>TFE 15<br>(PPA) | RTP 2285<br>HF TFE 15<br>(PEEK) | RTP 2299 X<br>125404 A<br>(PEEK) |
|----------------------------|----------------------|----------------------------|-------------------|---------------------------|-----------------------------------|-----------------------------|---------------------------------|----------------------------------|
| Manufacturer               | Solvay               | DuPont                     | St.<br>Gobain     | DSM                       | RTP                               | RTP                         | RTP                             | RTP                              |
| Polymer                    | PAI                  | TS PI                      | PTFE              | PA 4/6                    | PPS                               | PPA                         | PEEK                            | PEEK                             |
| Generic Description        | PTFE/Grph            | Grph                       | PI Pwdr           | PTFE                      | AF/PTFE                           | CF/PTFE                     | CF/PTFE                         | CF/Ceramic                       |
| Strength                   | G                    | G                          | Р                 | F                         | F                                 | E                           | E                               | G                                |
| Stiffness                  | G                    | G                          | Р                 | Р                         | F                                 | E                           | E                               | G                                |
| ~ Cont. Use<br>Temperature | >500°F<br>(260°C)    | >600°F<br>(316°C)          | ~550°F<br>(290°C) | ~350°F<br>(177°C)         | ~400°F<br>(205°C)                 | ~375°F<br>(190°C)           | ~475°F<br>(246°C)               | ~475°F<br>(246°C)                |
| Chem. Resistance           | E                    | E                          | E                 | Р                         | E                                 | G                           | E                               | E                                |
| Processing                 | 17 Day Cure          | Parts<br>Only              | Parts<br>Only     | G                         | G                                 | G                           | G                               | G                                |
| Friction G                 |                      | G                          | E                 | G                         | E                                 | F                           | G                               | G                                |
| Wear resistance            | E                    | E                          | E                 | G                         | G                                 | G                           | G                               | E                                |
| Moisture sensitivity       | Р                    | G                          | E                 | Р                         | E                                 | G                           | G                               | G                                |









