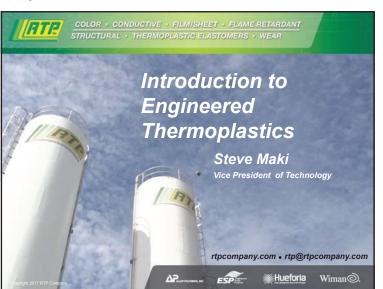
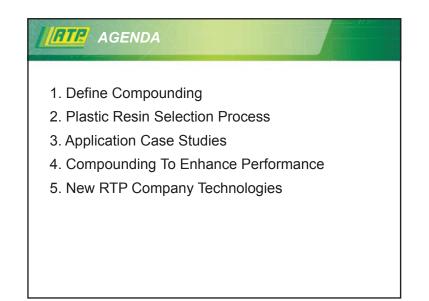
ENGINEERED **PLASTICS** WORKSHOP Learn About Thermoplastics I Connect with Experts

2017 (BOSTON AREA)

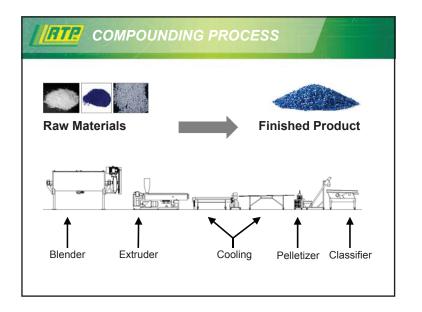
WESTBOROUGH / MASSACHUSETTS

YOUR GLOBAL COMPOUNDER OF **CUSTOM ENGINEERED THERMOPLASTICS**

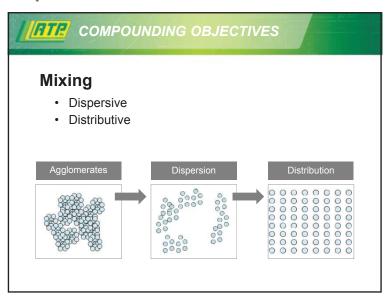

Introduction to Engineered Thermoplastics



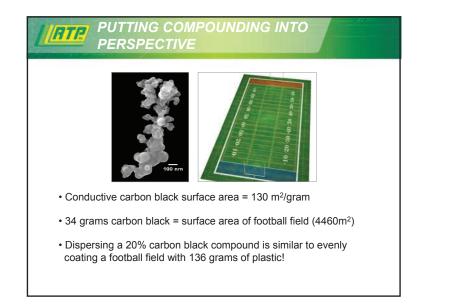
Steve Maki | VP of Technology smaki@rtpcompany.com (507) 474-5371

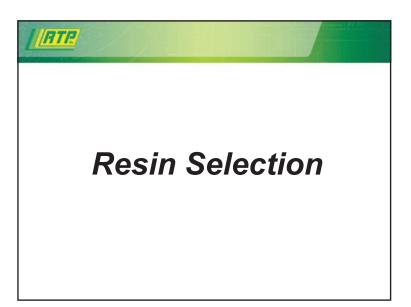


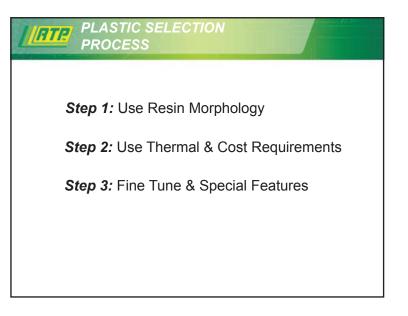
INDEPENDENT SPECIALTY

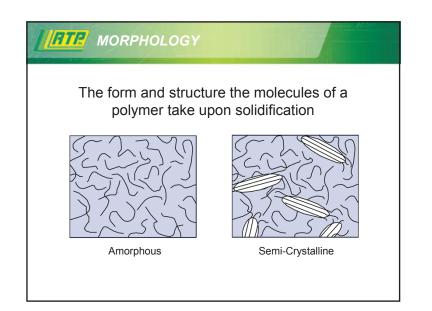

 $\mbox{Compounder} \rightarrow \mbox{We blend thermoplastic resins with fillers, additives, and modifiers}$

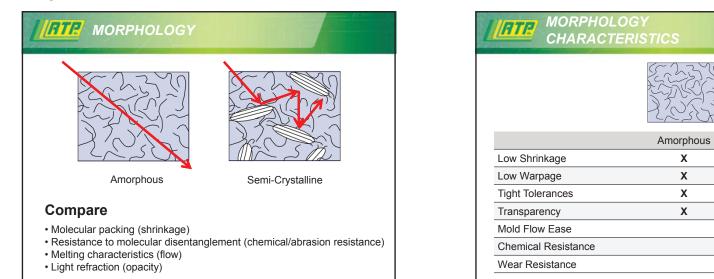
Specialty \rightarrow We create engineered formulations


 $\textbf{Independent} \rightarrow \text{We}$ are unbiased in our selection of raw materials









Semi-Crystalline

Х

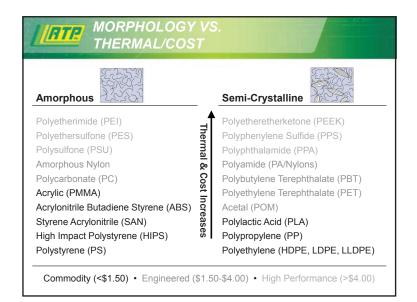
Х

Х

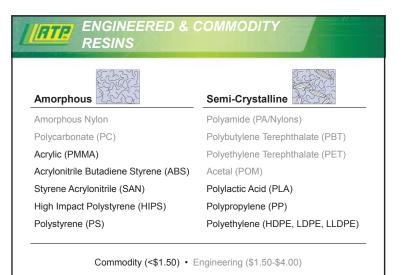
	MORPHOLO CHARACTE		
Tool Hou	n Printer Chassis? Ising? Pin Connector? Fitting?		
		Amorphous	Semi-Crystalline
Low S	hrinkage	Х	
Low V	/arpage	Х	
Tight	Tolerances	Х	
Trans	barency	Х	
Mold I	Flow Ease		X
Chem	ical Resistance		X
Wear	Resistance		X

EL-SM	
Amorphous	Semi-Crystalline
Polyetherimide (PEI)	Polyetheretherketone (PEEK)
Polyethersulfone (PES)	Polyphenylene Sulfide (PPS)
Polysulfone (PSU)	Polyphthalamide (PPA)
Amorphous Nylon	Polyamide (PA/Nylons)
Polycarbonate (PC)	Polybutylene Terephthalate (PBT)
Acrylic (PMMA)	Polyethylene Terephthalate (PET)
Acrylonitrile Butadiene Styrene (ABS)	Acetal (POM)
Styrene Acrylonitrile (SAN)	Polylactic Acid (PLA)
High Impact Polystyrene (HIPS)	Polypropylene (PP)
Polystyrene (PS)	Polyethylene (HDPE, LDPE, LLDPE)

Introduction to Engineered Thermoplastics - Steve Maki



PLASTIC SELECTION PROCESS


Step 1: Use Resin Morphology

Step 2: Use Thermal & Cost Requirements

Step 3: Fine Tune & Special Features

RTP AMORPHOUS RESINS

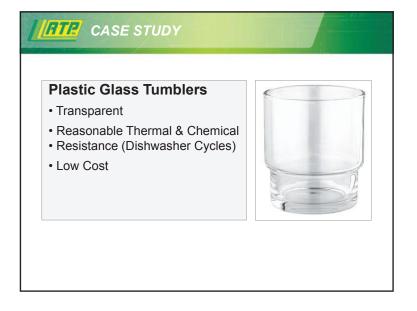
Morphology Features -- Low Shrink, Low Warp, Tight Dimensional Tolerances, Transparent (except HIPS & ABS), Poor Chemical & Abrasion, Poor Flow in Thin Mold Sections

Amorphous	Special Features
Amorphous Nylon	Transparent/good chem. resistance
Polycarbonate (PC)	Optical transparency/high impact
Acrylic (PMMA)	Optical transparency/UV stable
Acrylonitrile Butadiene Styrene (ABS)	High impact/high gloss/opaque
Styrene Acrylonitrile (SAN)	Transparent/mod. chem. resistance
High Impact Polystyrene (HIPS)	Moderate impact/opaque
Polystyrene (PS)	Transparent/brittle

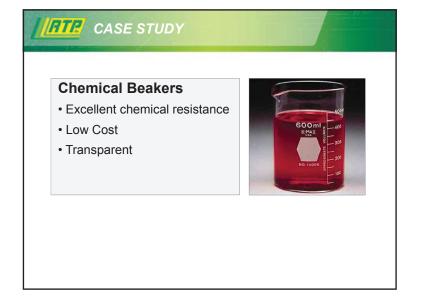
Commodity (<\$1.50) • Engineering (\$1.50-\$4.00)

BTE SEMI-CRYSTALL	INE RESIN
	Excellent Chemical Resistance, Excellent d Flow in Thin Mold Sections, Poor
Semi-Crystalline	Special Features
Nylon 6/12	Less Sensitive to humidity vs. 6&6/6
Nylon 6/6	Better thermal vs. 6/humidity Dep
Nylon 6	Hides GF/strong but humidity Dep
Polybutylene Terephthalate (PBT)	Good electricals/easier to mold
Polyethylene Terephthalate (PET)	Good electricals/difficult to mold
Acetal (POM)	Low wear & friction/high fatigue
Polylactic Acid (PLA)	Green/Low impact & thermal
Polypropylene (PP)	Poor low temp impact/mod thermal
Polyethylene (HDPE, LDPE, LLDPE)	Good low temp impact
	Engineering (\$1.50.\$4.00)

Commodity (<\$1.50) • Engineering (\$1.50-\$4.00)



<section-header><section-header>



<section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header>

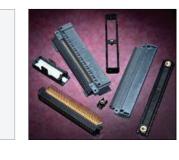
RTP CASE STUDY

Automotive Intake Manifold

- Chemical resistance
- Excellent strength, stiffness & impact
- Moderate heat resistance
- Moderate cost OK

RTP CASE STUDY

Oil Pan


- Chemical resistance
- Excellent strength, stiffness & impact
- Moderate heat resistance
- Moderate cost OK
- Extremely tight dimensions & flat

RTP CASE STUDY

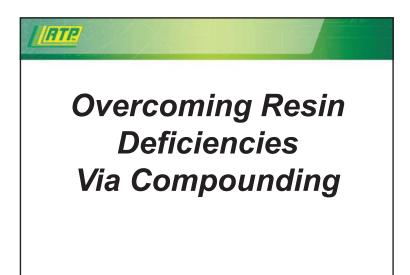
Electrical Connectors

- Good flow in thin walls
- Excellent electrical properties
- Dimensionally stable in humidity
- Moderate cost OK

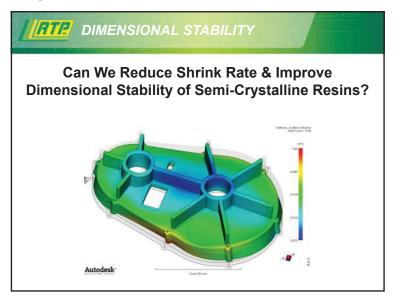
RTR CASE STUDY

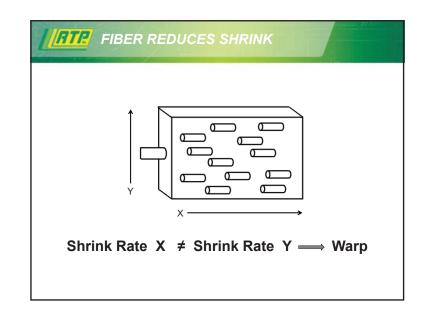
Conveyor Rollers

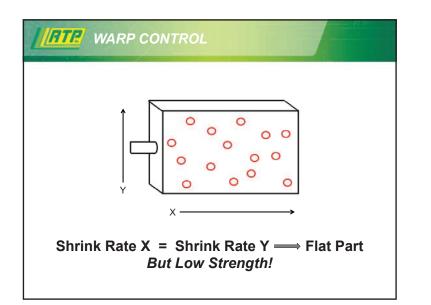
- Good abrasion resistance
- · Low wear & friction
- Moderate cost OK

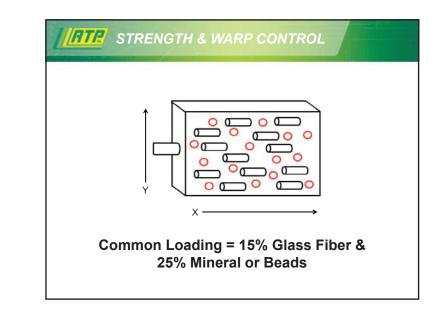

RTP CASE STUDY

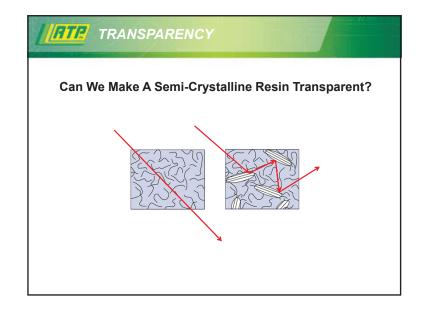
Printer Gears

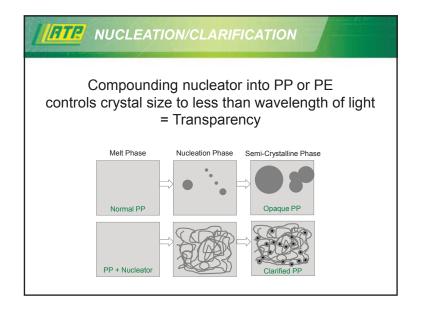

- Extremely tight dimensions
- Moderate cost OK
- Good abrasion resistance
- Low wear & friction

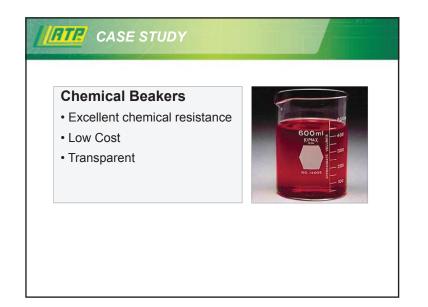





RTP **MORPHOLOGY DEFICIENCIES** Semi-Crystalline Amorphous Х Low Shrinkage D Х D Low Warpage **Tight Tolerances** Х D Х Transparency D Mold Flow Ease D Х Х Chemical Resistance D Х Wear Resistance D

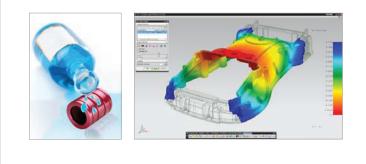



RTP CASE STUDY


Oil Pan

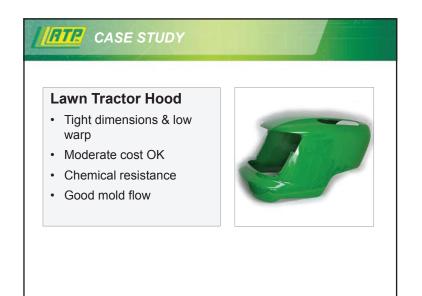
- Chemical resistance
- Excellent strength, stiffness & impact
- Moderate heat resistance
- Moderate cost OK
- Extremely tight dimensions & flat

Nylon 66 + 15% GF + 25% Mineral



GTR CHEMICAL RESISTANCE/MOLD

Can We Improve Chemical Resistance & Mold Flow of Amorphous Resins?



RTR	ALLOYING			
Alloy PC with ABS RTP 2500 A Series				
		PC	PC/ABS	
Tens	ile Strength, psi	9000	8900	
Flex	ural Mod, E6 psi	0.34	0.40	
Izod	Impact, ft lb/in	15	13	
HDT	@ 264 psi, °F	270	210	
Fuel	Resistance	Poor	Poor	
Melt	Flow, gm/10 min	10	15	
	ty	Transparent	Opaque	

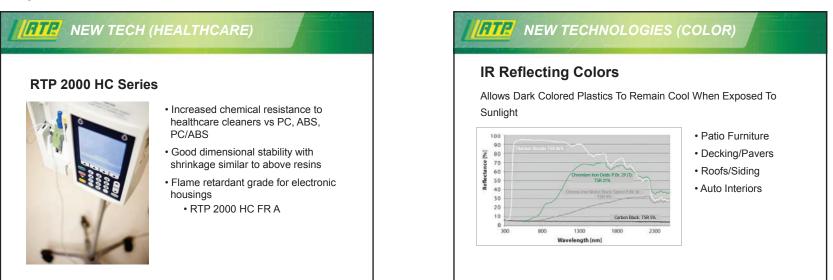
ALLOYING

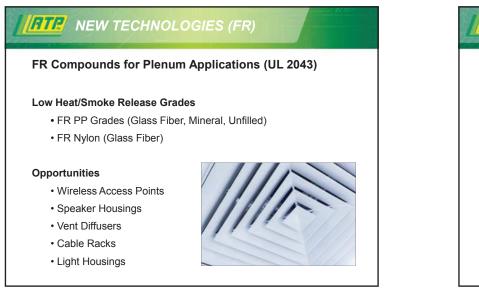
Alloy PC With Polyester (PBT or PET) RTP 2099 X 63578 B

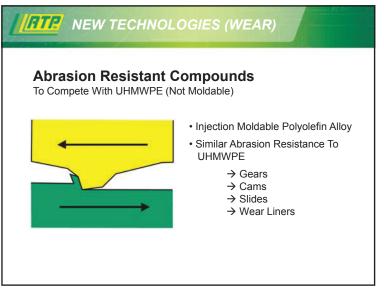
	PC	PC/PBT
Tensile Strength, psi	9000	8700
Flexural Mod, E6 psi	0.34	0.35
Izod Impact, ft Ib/in	15	15
HDT @ 264 psi, °F	270	250
Fuel Resistance	Poor	Fair
Melt Flow, gm/10 min	10	20
Clarity	Transparent	Opaque

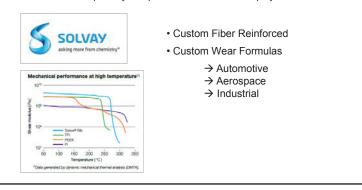
RTP WEAR RESISTANCE

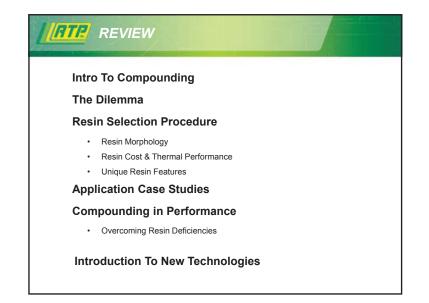
Can We Make An Amorphous Resin Wear Resistant?


Compound PTFE Into PC RTP 300 TFE 15			
	PC	PC/15 PTFE	Acetal
Wear Factor	560	130	90
Dynamic Coef. of Friction	0.60	0.33	0.40









NEW TECH (HIGH TEMPERATURE) Specialty Torlon Compounds

RTP Company has a license agreement with Solvay Specialty Polymers to manufacture specialty compounds based on Torlon polyamide-imide

