

- Compounder → We blend thermoplastic resins with fillers, additives, and modifiers
- Specialty → We create engineered formulations
- Independent → We are unbiased in our selection of raw materials

Agenda

- Define Compounding
- Plastic Resin Selection Process
- Compounds for Healthcare

- Conductive carbon black surface area = 130 m²/gram
- 34 grams carbon black = surface area of football field (4460m²)
- Dispersing a 20% carbon black compound is similar to evenly coating a football field with 136 grams of plastic!

Plastic Selection Process YOUR GLOBAL COMPOUNDER OF CUSTOM ENGINEERED THERMOPLASTICS

Step 1: Use Resin Morphology —

Step 2: Use Thermal & Cost Requirements

Step 3: Fine Tune & Special Features

Morphology YOUR GLOBAL COMPOUNDER OF CUSTOM ENGINEERED THERMOPLASTICS

The form and structure the molecules of a polymer take upon solidification

Amorphous

Semi-Crystalline

- Molecular Packing (Shrinkage)
- Resistance to Molecular Disentanglement (Chemical/Abrasion Resistance)
- Light Refraction (Opacity)
- Melting Characteristics (Flow)

Imagineering Plastics®	YOUR GLOBAL COMPOUNDER OF CUSTOR	M ENGINEERED THERMOPLASTIC
	Amorphous	Semi-Crystalline
Low Shrinkage	¥	
Low Warpage	₩	
Tight Tolerances	₩	
Transparency	₩.	
Mold Flow Ease		¥
Chemical Resistance		¥
Wear Resistance		¥

Morphology Of Thermoplastics

YOUR GLOBAL COMPOUNDER OF CUSTOM ENGINEERED THERMOPLASTICS

Amorphous

Polyetherimide (PEI)

Polyethersulfone (PES)

Polysulfone (PSU)

Amorphous Nylon

Polycarbonate (PC)

Acrylonitrile Butadiene Styrene

(ABS)

Styrene Acrylonitrile (SAN)

Polystyrene (PS)

High Impact Polystyrene (HIPS)

Acrylic (PMMA)

Semi-Crystalline

Polyetheretherketone (PEEK)

Polyphenylene Sulfide (PPS)

Polyphthalamide (PPA)

Polyamide (PA/Nylons)

Polyethylene Terephthalate (PET)

Polybutylene Terephthalate (PBT)

Acetal (POM)

Polylactic Acid (PLA)

Polypropylene (PP)

Polyethylene (HDPE, LDPE, LLDPE)

Plastic Selection Process

YOUR GLOBAL COMPOUNDER OF CUSTOM ENGINEERED THERMOPLASTICS

Step 1: Use Resin Morphology

— Step 2: Use Thermal & Cost Requirements —

Step 3: Fine Tune & Special Features

Morphology Vs Thermal/Cost

YOUR GLOBAL COMPOUNDER OF CUSTOM ENGINEERED THERMOPLASTICS

Amorphous

Polyetherimide (PEI)

Polyethersulfone (PES)

Polysulfone (PSU)

Amorphous Nylon

Polycarbonate (PC)

Acrylonitrile Butadiene Styrene (ABS)

Styrene Acrylonitrile (SAN)

Polystyrene (PS)

High Impact Polystyrene (HIPS)

Acrylic (PMMA)

Semi-Crystalline

Polyetheretherketone (PEEK)

Polyphenylene Sulfide (PPS)

Polyphthalamide (PPA)

Polyamide (PA/Nylons)

Polyethylene Terephthalate (PET)

Polybutylene Terephthalate (PBT)

Acetal (POM)

Polylactic Acid (PLA)

Polypropylene (PP)

Polyethylene (HDPE, LDPE, LLDPE)

Commodity (<€3.00) • Engineered (€3.00 - €8.00) • High Performance (>€8.00)

Thermal & Cost Increases

Plastic Selection Process

YOUR GLOBAL COMPOUNDER OF CUSTOM ENGINEERED THERMOPLASTICS

Step 1: Use Resin Morphology

Step 2: Use Thermal & Cost Requirements

Step 3: Fine Tune & Special Features —

Plastic Selection Process

YOUR GLOBAL COMPOUNDER OF CUSTOM ENGINEERED THERMOPLASTICS

Compare:

- PC
 - Impact
- Nylon
 - Strength, fuel resistance
- Acetal
 - Wear and friction

Vs.:

- PMMA
 - Cost, UV
- PP
 - Cost, stable properties
- Nylon
 - Wear and friction + mechanical properties

PEI Replacement

YOUR GLOBAL COMPOUNDER OF CUSTOM ENGINEERED THERMOPLASTICS

- Topic of the day: PEI Replacement
 - Tight supply
 - Long lead times
 - One supplier

Several alternatives, none are one-to-one replacements

PEI Replacement

YOUR GLOBAL COMPOUNDER OF CUSTOM ENGINEERED THERMOPLASTICS

• Which resin depends on:

- Temperature performance
- Mechanical properties
- Chemical resistance

Application Requirements YOUR GLOBAL COMPOUNDER OF CUSTOM ENGINEERED THERMOPLASTICS

- Environmental requirements
 - What conditions must the material survive?
 - What must survive around the material?
- Property requirements
 - What other properties does the material bring to the table?

"Typical" vs. "Medical"

Environmental Exposure YOUR GLOBAL COMPOUNDER OF CUSTOM ENGINEERED THERMOPLASTICS

- Typical requirements, resistance to:
 - Chemicals
 - Temperature
 - Humidity
- Medical requirements
 - Sterilization
 - Tissue/Fluid contact
 - Drug flow path

Sterilization

YOUR GLOBAL COMPOUNDER OF CUSTOM ENGINEERED THERMOPLASTICS

- Radiation
 - Gamma
 - E-beam

Sterilization

- Radiation resistant
 - ABS
 - Sulfones (PSUL, PES, PPSU)
 - PC
 - Typically yellows with radiation exposure
 - Maintains mechanical properties
 - Polypropylene
 - Requires stabilization to survive multiple exposures
- Not resistant
 - Polyethylene
 - POM

Sterilization

YOUR GLOBAL COMPOUNDER OF CUSTOM ENGINEERED THERMOPLASTICS

- Ethylene Oxide (EtO)
 - Toxic gas
 - Polymers require chemical resistance
 - Most polymers OK for use with EtO
 - Some ABS grades exhibit stress cracking

Sterilization

- Steam (Autoclave)
- Commonly used in healthcare facilities
- Temps from 120°C to 135°C with humidity exposure
- Exposure time from 3 to 15 minutes
- Stress relaxation (annealing) can occur

Sterilization

YOUR GLOBAL COMPOUNDER OF CUSTOM ENGINEERED THERMOPLASTICS

Resistance to autoclave

- Best
 - PEEK
 - PPSU
- Good
 - PP
 - PA
 - PSUL
 - PC

Not recommended for autoclave

- Styrenics
 - ABS
- Polystyrene
- Polyesters
 - PBT
 - PET
- Materials with poor resistance to heat/humidity

Internal Fluid/Tissue Contact

- Suitability often determined by biocompatibility testing
 - ISO 10993
 - USP Class VI
- Testing best performed on part, not just material
- Specialty medical compounder material selection:
 - Biocompatible resins
 - FDA compliant additives

Formulating for Body Contact YOUR GLOBAL COMPOUNDER OF CUSTOM ENGINEERED THERMOPLASTICS

- Resins
 - ISO 10993
 - USP Class VI
- Fillers/additives
 - FDA Compliant
 - Have history of passing previous bio tests
- "No Subs" formulation

Drug Flow Path

- Biocompatibility
- Chemical resistance of polymer
 - Resist degradation from drug exposure
- Drug potency
 - Extractables
 - Material-drug interaction

Property Requirements

Compounding in Performance Focus: Metal Replacement Conductive/Antistatic Laser Direct Structuring TPEs

Metal Replacement

YOUR GLOBAL COMPOUNDER OF CUSTOM ENGINEERED THERMOPLASTICS

 Generally focused on fiber reinforced compounds

- Questions to ask:
 - Might the metal part be overspecified?
 - Are there secondary operations that can be eliminated with a switch to plastic?
 - Could performance be enhanced with a switch to plastic?

Surgical Head Restraint YOUR GLOBAL COMPOUNDER OF CUSTOM ENGINEERED THERMOPLASTICS

Application:

Surgical Head Restraint System

Problem:

MR/CT scans unrecognizable due to magnetic material.

Current Material:

Titanium

Solution:

PEEK reinforced with carbon fiber.

Metal Replacement

YOUR GLOBAL COMPOUNDER OF CUSTOM ENGINEERED THERMOPLASTICS

Items to note:

- Consult with plastics experts on proper plastic design principles.

- Consider mold design and gating as carefully as part design and material selection.

Surgery Drill Guide YOUR GLOBAL COMPOUNDER OF CUSTOM ENGINEERED THERMOPLASTICS

Application:

Surgery Drill Guide

Problem:

Needed a disposable product at a disposable price.

Current Material:

Metal

Solution:

Glass fiber reinforced PC

EMI Shielding Methods YOUR GLOBAL COMPOUNDER OF CUSTOM ENGINEERED THERMOPLASTICS

Metals

- Metal foil/screen
- Actual metal housing

Polymer Compound

- Increase design freedom
 - Part consolidation
- Eliminate time-consuming secondary operations
 - Reduce part cost
 - Shorter time to market

Additive Comparison

YOUR GLOBAL COMPOUNDER OF CUSTOM ENGINEERED THERMOPLASTICS

Stainless Steel Fiber

- Non-Reinforcing
- Equivalent shrinkage to neat resin
- Moderate shielding performance
- Colorable

Nickel-Coated Carbon Fiber

- High shielding performance

Advantages

- Specialized formulations
- Limited number of platers
- Standard single shot tooling
- Great design flexibility

Additive Process

Selective metallization of thermoplastic injection molded parts by Laser Direct Structuring

3 Step Process

- 1. Injection Molding
- 2. Laser Activation
- 3. Selective Metallization

Applications

YOUR GLOBAL COMPOUNDER OF CUSTOM ENGINEERED THERMOPLASTICS

- Connectors
- Sensors
- Antennas for handheld devices
 - Phones
 - Cameras
 - GPS
- Security Covers
- Various components for part consolidation

Materials Available

- PC
- ABS
- PC/ABS
- Nylon 6/6 with glass and mineral
- LCP with glass and mineral
- PPA with glass and mineral
- PEI with glass and mineral
- PEEK with glass and mineral

Styrenic Based TPEs YOUR GLOBAL COMPOUNDER OF CUSTOM ENGINEERED THERMOPLASTICS

2700 S & 2740 S Standard Products

- RTP 2700 S Series 30A to 80A unfilled
 - Translucent to clear, low gravity, excellent elasticity
 - Medical and FDA compliant grades available (MD and Z)
- RTP 2740S Series 30A to 80A filled SEBS
 - Opaque, higher gravity, FDA compliant grades available

Attributes

- Highly Elastic
- Highly Customizable
- Design Flexibility
- **Broad Cost Spectrum**
- **Great RT Compression Set**

2799 S X Design Flexibility

- · Water clear
- Increased Elasticity
- Low Hardness + Strength
- · EU food contact compliant
- Processing Tweaks
- Haptics (Touchy-Feely)

Bonding to Polar Substrates

YOUR GLOBAL COMPOUNDER OF CUSTOM ENGINEERED THERMOPLASTICS

RTP 6042 Series: ABS, PC, and PC/ABS Bondable SEBS Alloys

- Excellent Bonding due to unique technology
- · Great grip and feel, very durable
- · Good aging properties relative to competitors
- · Excellent processability and aesthetics
- Specialty versions available for unique applications
- MD / ISO 10993 grades available

Typical Applications

- Consumer Electronics
- Hand Tools
- Soft-Touch Home Goods
- Medical Devices
- Knobs and Controls
- Personal Grooming Products
- Fitness Equipment
- Phone and Tablet Cases

Wrap-Up

- Defined Compounding
- Plastic Resin Selection Process
 - Basics
 - Medical Specific Considerations
- Compounds for Healthcare
 - Metal Replacement
 - Conductive Thermoplastics
 - LDS
 - TPEs

