| [[RTP] | WEAR AND FRICTION | | |--------|-------------------|--| | 1911 | | | "My application is wearing out!" Fatigue? Chemical Attack? Abrasion? Weather/UV Resistance? ? # Be Specific! **Wear** – Sliding wear of thermoplastic compounds against a contact surface (steel, aluminum, other thermoplastics, etc.) $\pmb{Friction}$ – Reducing/controlling the friction in a sliding or moving system. Internally Lubricated Thermoplastics # **FIF** WEAR AND FRICTION SOLUTIONS #### Wear and Friction Resistant compounds provide solutions for a number of common issues, including: # **External Lubrication** Scratch and Mar Enhance product quality and increase customer satisfaction using Surface Protection (SPR) compounds Stiction Reduce stick-slip phenomenon by selecting materials based on Glide FactorSM data Manage catastrophic third party abraders with abrasion resistant technology for injection molding Buzz-Squeak Rattle (BSR) Reduce noise caused by part movement and vibration with economical compound technologies Extreme Conditions Withstand high temperatures, pressure, velocity, chemicals, and demanding tolerances with extreme solutions # RTE AGENDA - Wear Definitions & Test Methods - II. Friction Definitions & Test Methods - III. Additive Technologies - IV. Application Examples - Extreme Conditions Ultra Wear # HTE WEAR DEFINITIONS # Tribology The Science of the mechanisms of friction, lubrication, and wear of interacting surfaces that are in relative motion # **Recall: Sliding surfaces** Wear = Loss of material over time # HTP WEAR DEFINITIONS #### **Adhesive Wear Mechanism** - · The primary mechanism for thermoplastic wear - Characterized by transfer of material from one part to the other caused by frictional heat # MEAR TESTING **Question:** How do you simulate an application and test a material for long-term wear resistance? **Answer:** RTP Company uses **ASTM D-3702** wear test to quantify the amount of material a sample loses over time under specific conditions (pressure, speed, temperature) # MEAR TESTING # ASTM D-3702 "Thrust Washer" Wear Test #### Adjustable: - Counter-surface (thrust washer) - (thrust washerPressure - Velocity - Temperature The best use of this test is to perform comparative screening of multiple candidate materials # WEAR TESTING - RTP Company has six thrust washer wear testing machines in our wear lab located in Winona, MN - Equipment is available to perform customer requested testing - A test isn't always just a testConditions matter! # WEAR TESTING Wear factor (K): Used to quantify wear resistance. Lower Value = Better Wear Resistance! $K = W/(F \times V \times T)$ **K** = Wear Factor: $(in^3-min/ft-lb-hr) \cdot 10^{-10}$ or $(mm^3/N-m) \cdot 10^{-8}$ **W** = Volume wear: in³ or mm³ $\mathbf{F} = \text{Force}: \text{Ib or N}$ **V** = Velocity: ft/min or m/sec T = Elapsed time: hr or sec 100 Hour Test! # **MATR** WEAR TESTING #### **Standard Conditions:** - · Steel thrust washer - 40 psi · 50 ft/min - Ambient temp - 100 hour test #### PV = (Pressure · Velocity) Conditions often used together to characterize severity of a wear environment $2,000 \text{ PV} = (40 \text{ psi} \cdot 50 \text{ ft/min})$ Typical testing done at 2,000 to 10,000 PV # **MATR** WEAR TESTING Question: Does an equivalent PV always result in the same data? Standard Conditions: PV = 2,000 - P = 40psiV = 50 ft./min Non-Standard Conditions: $\underline{PV} = 2,000$ • P = 10psi • V = 200 ft./min Answer: No...Wear factor will change based on individual conditions # RTP WEAR TESTING Question: What happens when PV is increased? Does Wear Factor (K) also increase? Wear per ASTM D 3702 against C1018 Steel # RTE WEAR DEFINITIONS #### **Abrasive Wear Mechanism** - Caused by a hard material scraping or abrading away at a softer material - Characterized by grooves cut or gouged into the surface - · Three body # MEAR TESTING #### Dry sand or sand-slurry abrasion testing # ASTM G105 ASTM G65 Rubber Wheel Weight Sand Slurry Specimen # RTP ABRASION RESISTANT SOLUTIONS #### **Abrasion Resistant Compounds (ABR)** RTP Company has developed its new ABR Series of compounds, which offer new advantages for the designer, including: - Greater design freedom and performance properties, because they are offered in a number of resins - Ability to injection mold or extrude the material, unlike other traditional materials that may be limited to compression, ram extrusion, or machining - Elimination of costly secondary operations - Minimizing abrasive wear and providing excellent sliding wear and friction performance - · Competitive value pricing # ABRASION TEST RESULTS #### ASTM G65 (Dry Sand) Abrasion Results # ATP. AGENDA - I. Wear Definitions & Test Methods - II. Friction Definitions & Test Methods - III. Additive Technologies - IV. Application Examples - V. Extreme Conditions Ultra Wear # FRICTION DEFINITIONS ## Coefficient of Friction (µ) Ratio of the force of friction between two bodies and the force pressing them together | I IRTE | FRICTION | DEFINITION | S | |--------|----------|------------|---| | 1000 | | | | ## Coefficient of Friction (µ) # S s Static coefficient of friction $(\mu_s) = Fx/Fy$ Fx = Force to *initiate* motion Fy = Normal force holding surfaces together # 3 Dynamic coefficient of friction $(\mu_k) = Fx/Fy$ Fx = Force to sustain motion Fy = Normal force holding surfaces together # FRICTION DEFINITIONS - · In most non-plastic materials - μ_s>μ_k - Thermoplastics are somewhat unique - U₁.>U. - May cause "slip/stick" Glide FactorSM - If μ_k>>μ_s you may have squeaking # FRICTION TESTING ## ASTM D 1894 "sled test" - · Coefficient of friction testing - Does not determine wear resistance - · Can show slip/stick # FRICTION TESTING #### **RTP Modified ASTM D3702 Friction Test** - Oscillating motion used to measure Friction coefficients and Glide FactorSM - Glide Factor SM is used to quantify the difference between μ_s and μ_k in order to reduce/eliminate stick/slip - Used to generate friction data for optimal material selection in medical devices # PLASTIC VS PLASTIC FRICTION EXAMPLE # ATE TESTING REVIEW Question: What is the primary method RTP Company uses measure wear resistance? Answer: ASTM D3702 Thrust Washer wear test; Wear Factor (K) Question: What methods does RTP Company use to measure Friction? Answer 1: ASTM D1894 "Sled Test" (Static and Dynamic Coefficient of Friction) Answer 2: Modified ASTM D3702 Thrust washer friction test (Glide FactorSM) # AGENDA - I. Wear Definitions & Test Methods - II. Friction Definitions & Test Methods - III. Additive Technologies - IV. Application Examples - V. Extreme Conditions Ultra Wear # ADDITIVE TECHNOLOGIES # ADDITIVE TECHNOLOGIES #### PTFE - Polytetrafluoroethylene (5-20%) - Workhorse additive solid white powder - Compatible with nearly all thermoplastic resins #### Limitations - · Fluorine content - · Die plate-out - Relatively high loadings - Cost fluctuation ## **PTFE Wear Mechanism** Part – As Molded Part – After break-in period Exposed PTFE shears to form layer # ADDITIVE TECHNOLOGIES #### Unfilled vs. PTFE Wear Factor # RTP APPLICATION EXAMPLE # Laser Printer Fuser Gears #### Requirements - High operating temperatures - Good wear resistance #### Solution Glass fiber reinforced and PTFE lubricated PPS # ADDITIVE TECHNOLOGIES ## Silicone - Polydimethylsiloxane (1-3%) - Boundary lubricant which migrates to the surface over time - Migration rate is viscosity dependent - · Excellent friction reducer - Best in high speed/low load applications #### Limitations - · Limited use in decorated parts - · Poor adhesion of paint or print inks - · Bad for electrical applications - Can foul contacts # FIE ADDITIVE TECHNOLOGIES # PTFE + Silicone Wear Mechanism t – As Molded Part – After break-in period # FITE ADDITIVE TECHNOLOGIES #### Wear Resistance with PTFE and Silicone # ADDITIVE TECHNOLOGIES #### Friction Reduction with PTFE and Silicone # ADDITIVE TECHNOLOGIES #### Specific Gravity Differences with PTFE and Silicone #### Tensile Strength with PTFE and Silicone # RTE ADDITIVE TECHNOLOGIES | | PC | | PA 6/6 | | POM | | | | | |---------------------------------|----------|---------------|------------------|----------|---------------|------------------|----------|---------------|------------------| | | Unfilled | PTFE
(20%) | Silicone
(2%) | Unfilled | PTFE
(20%) | Silicone
(2%) | Unfilled | PTFE
(20%) | Silicone
(2%) | | Specific
Gravity | 1.19 | 1.31 | 1.19 | 1.14 | 1.26 | 1.13 | 1.41 | 1.52 | 1.40 | | Tensile
Strength
(psi) | 8,500 | 7,000 | 8,500 | 12,000 | 9,500 | 11,000 | 8,700 | 6,500 | 7,800 | | Flexural
Modulus
(psi) | 340,000 | 320,000 | 350,000 | 400,000 | 400,000 | 400,000 | 350,000 | 300,000 | 350,000 | | Notched
Impact
(ft-lb/in) | 7.5 | 3.5 | 10.5 | 1.0 | 1.0 | 1.0 | 1.5 | 1.0 | 1.5 | # APPLICATION EXAMPLE #### **Garage Door Opener** Limit Switch - stiffness #### Solution Silicone lubricated PC Not Transparent! More on this later... # Drug Delivery Pen Components Requirements • Good strength, dimensional stability, eliminate secondary lubricant application and no slip/stick. Solution(s) • Optimal Plastic "Friction Pairs" with low Glide FactorSM Fiber reinforced and internally lubricated PC or PBT # ADDITIVE TECHNOLOGIES Internally lubricated POM or PBT # FTE ADDITIVE TECHNOLOGIES ## PFPE - Perfluoropolyether Oil (< 1%) - Thermally stable up to PEEK processing temps - Differentiates RTP Company from others - Synergy with PTFE - · Specific gravity benefits #### Limitations - Limited effectiveness in amorphous resins - Needs PTFE "kick" to deliver optimum friction reduction # APPLICATION EXAMPLE ## **Agricultural Pump** #### Requirements Chemical and wear resistance #### Solution PFPE lubricated PP # APPLICATION EXAMPLE #### **Universal Conveyor Roller** #### Requirements Strength, conductivity and wear resistance (must be silicone-free) #### Solution Carbon fiber reinforced and PTFE/PFPE lubricated PPS # FTE ADDITIVE TECHNOLOGIES #### **Additives Reduce Clarity!** # ADDITIVE TECHNOLOGIES #### Graphite Powder (5-30%) - · Aqueous environments - · Excellent temperature resistance - · Black color #### Molybdenum Disulfide - MoS₂ (1-5%) - Nucleating agent in nylons: creates harder surface - High affinity to metal: - Smoother mating metal surface = lower wear #### Limitations - · Limited use - · Dark color limits colorability - · Sloughing type additives # RTP APPLICATION EXAMPLE # **Water Meter Valve** #### Requirements Dimensional stability, potable water contact - NSF listed #### Solution Graphite lubricated PS and SAN # **FITE** ADDITIVE TECHNOLOGIES #### **Reinforcing Fibers and Wear Resistance** Glass Fiber Carbon Fiber - Improved bearing capabilities/wear resistance - · Very abrasive - · Higher bearing - capabilities Excellent thermal - resistance Conductive - · Less abrasive - Little strength Aramid Fiber - improvement Very gentle to mating surface # **FTE** ADDITIVE TECHNOLOGIES Fibers protect the polymer, but may be abrasive against the mating material Glass Carbon Aramid Aluminum Contact Surface # APPLICATION EXAMPLE #### **Copier Bushings** #### Requirements High heat deflection temperature and good wear resistance #### Solution Aramid fiber reinforced and PTFE lubricated PPA # ADDITIVE TECHNOLOGIES #### **Additive Synergies** # 10/10/10 - Carbon Fiber/Graphite Powder/PTFE Typical additive package for high load bearing/high temp. applications #### Aramid Fiber/PTFE demanding conditions Excellent wear package that is gentle on the mating surface #### Carbon Fiber/Ceramic Additive Non-PTFE solution, good for very # AGENDA - I. Wear Definitions & Test Methods - II. Friction Definitions & Test Methods - III. Additive Technologies - IV. Application Examples - V. Extreme Conditions Ultra Wear # **FITE** EXTREME CONDITIONS ## What happens when your application has a PV higher than 10,000? **High Temperature** High Loads (500+ psi) **High Speeds** Chemical Resistance **Excellent Mechanical Properties** Injection Molded Parts 100 ft/min tests 200 ft/min tests 10,000 PV: 100 psi 10,000 PV: 50 psi 25,000 PV: 250 psi 25,000 PV: 125 psi 50,000 PV: 500 psi 50,000 PV: 250 psi # **EXTREME CONDITIONS** #### **Ultra Wear Products Developed for Demanding applications** Transmission Seal High Load Thrust Washers Pipe Gaskets Off-Shore Drilling Construction Vehicles Oil and Gas Industry # **EXTREME CONDITIONS** 1. Develop a series of high performance RTP products ideal for "Ultra" testing #### Resins Additives • PEEK • PPS · Carbon Fiber PTFE Ceramic • PPA Graphite Aramid Fiber MoS₂ - 2. Compare RTP Ultra Products with industry leading wear resistant materials - Rulon® J - Vespel® SP-21 - Rulon® LR - Vespel® SP-211 - Torlon® 4301 - Stanyl® TW371 - Torlon® 4630 #### **EXTREME CONDITIONS** PAI TS PI PA 4/6 PPS PPA PEEK PEEK G G F Е Е G ~400 °F (205 °C) ~375 °F (190 °C) ~475 °F (246 °C) ~475 °F (246 °C) G 17 Day Cure G G F G G # RTP. APPLICATION EXAMPLE #### **AC Compressor Scroll Seal** #### Requirements High temperature, chemical and wear resistance #### Solution Carbon fiber reinforced and PTFE/Graphite lubricated PEEK # APPLICATION EXAMPLE #### Transmission Seal Rings/ Thrust Washers #### Requirements Ability to survive extremely high PV conditions with external lubrication #### Solution Carbon fiber reinforced, internally lubricated PEEK # FITE ADDITIONAL INFORMATION | | Water Committee of Marie Co. | |---|---| | CARCEL . | | | Series species matter of
services | - | | 2222 | | | special page | | | adm. | NAME AND ADDRESS OF THE PARTY AND PARTY AND PARTY. | | Management of the same | TO Employ broken only formignic company for any deploy on on-
thing or control to make the Poly of the control of the deposit on on-
thing or control to make the Poly of the control of the deposit of
the control of the control of the control of the control of the control
of the control of the control of the control of the control of the control
of the control of the control of the control of the control of the control
of the control of the
deposit control of the cont | | | On the months are a second of the | Wear Factor (K) and friction coefficient (μ_{K}) for common tribological compounds: <u>www.rtpcompany.com/info/wear</u>