

ATP STRENGTH

STIFFNESS

TR THE ADDITIVES TOOLBOX

Polymer blends

POLYMER BLENDS

RTP POLYMER BLENDS

	PC	PC/ABS (RTP 2500 A)	ABS
Specific Gravity	1.19	1.15	1.06
Tensile Strength (MPa)	60	60	45
Notched Izod Impact (J/m)	800	700	270

FTE POLYMER BLENDS

Housing for Hearing Tester

Problem:	Toughness and chemical resistance
Solution:	Polycarbonate/ABS Alloy
Benefits:	Strength and toughness of PC with the added chemical resistance of ABS

IMPACT MODIFIERS

	PA 6/6	Impact Modified PA 6/6
Specific Gravity	1.14	1.08
Notched Izod Impact (J/m)	55	900
Tensile Strength (MPa)	80	52
Flexural Modulus (GPa) (Stiffness)	2.8	2.1

IMPACT MODIFIERS

ATV Wheel Bead Lock Ring

Problem:	Low ductility	
Solution:	Impact Modified Nylon 6/6 with fiber reinforcement	
Benefits:	 Retain some stiffness of reinforced Nylon Improved ductility for high strain rate loads 	

THE ADDITIVES TOOLBOX

FILLERS

Beads (Glass) : Potters, In

Minerals

(Talc)

Fibers (Glass)

Property change determined by:

LOW ASPECT RATIO

2000 OC		PC	PC + 10% Glass Beads	PC + 30% Glass Beads
	Specific Gravity	1.19	1.27	1.42
Beads (Glass) Photo: Potters, Inc.	Tensile Strength (MPa)	60	55	48
	Notched Izod Impact (J/m)	800	100	80
Aspect Ratio = 1	Flexural Modulus (GPa)	2.3	2.6	3.4

LOW ASPECT RATIO

PP + 40% Talc PP + 20% PP Talc Specific Gravity 0.91 1.05 1.25 Tensile Strength (MPa) 32 32 30 Notched Izod Impact (J/m) 53 53 43 Flexural Modulus 1.4 2.6 3.9 (GPa)

(Talc) Aspect Ratio = 2 - 50

Minerals

Copyright	2019 F	RTP (Company

LOW ASPECT RATIO

Shrink Rate X = Shrink Rate Y = Flat Part

RTP LOW ASPECT RATIO

Reusable Handling Container

Problem:	Warpage prevented smooth operation	
Solution:	Mineral filled Polypropylene	
Benefits:	Reduced warpage Improved functionality	

HIGH ASPECT RATIO

CMC.		PC	PC + 30% Glass Beads	PC + 30% Glass Fiber
	Specific Gravity	1.19	1.42	1.42
Fibers (Glass)	Tensile Strength (MPa)	60	48	124
	Notched Izod Impact (J/m)	800	80	160
Aspect Ratio = 50 - 250	Flexural Modulus (GPa)	2.4	3.4	7.6

Fibers (Glass) Aspect Ratio = 50 - 250

	PP	PP + 40% Talc	PP + 40% Fiber	
Specific Gravity	0.91	1.25	1.21	
Tensile Strength (MPa)	32	30	82	
Notched Izod Impact (J/m)	53	43	120	
Flexural Modulus (GPa)	1.4	3.9	6.5	

HIGH ASPECT RATIO

Surgery Drill Guide

Problem:	Stiffness and dimensional stability
Solution:	Glass fiber reinforced Polycarbonate
Benefits:	RigidityTight tolerances

HIGH ASPECT RATIO - WARP

Shrinkage X1 & X2 ≠ X3 → Warp

HIGH ASPECT RATIO - FLAT

Shrinkage X1 = X2 = X3 Flat Part

HIGH ASPECT RATIO

		PEEK	PEEK + 40% Glass Fiber	PEEK + 40% Carbon Fiber
	Specific Gravity	1.30	1.61	1.45
	Tensile Strength (MPa)	93	186	265
Carbon Fibers	Notched Izod Impact (J/m)	53	133	91
Aspect Ratio = 50 - 250	Flexural Modulus (GPa)	3.8	13.8	30.3

_		

FIBER COMPARISON- PP

	PP 40% GF	PP 40% VLF	PP 20% CF
Flexural Modulus (GPa)	6.5	8.5	8.9
Tensile Strength (MPa)	82	124	93
Notched Izod Impact (kJ/m ²)	12.1	22.6	5
Specific Gravity	1.21	1.21	1.00

FIBER COMPARISON - PA 6/6

	PA 6/6 60% VLF (Long Fiber)	PA 6/6 30% Carbon Fiber
Flexural Modulus (GPa)	20.0	19.0
Tensile Strength (MPa)	262	248
Tensile Elongation (%)	2.0	2.5
Specific Gravity	1.71	1.27

FIBER COMPARISON - PPS

	PPS 40% Glass	PPS 15% Carbon
Flexural Modulus (GPa)	15.2	15.9
Tensile Strength (MPa)	169	172
Tensile Elongation (%)	1.5	1.1
Specific Gravity	1.68	1.40

FTR CARBON FIBER APPLICATION

Brake Rotor Measuring Probe

Problem:	Casting replacement
Solution:	Carbon fiber reinforced PPA
Benefits:	High strengthHigh stiffness

FTR EXTREME ASPECT RATIO -VLF

Comments of		PP + 40% Short Glass	PP + 40% Long Glass
Constant of the second second	Specific Gravity	1.21	1.21
	Tensile Strength (MPa)	82	124
Long Glass Fiber	Notched Izod Impact (J/m)	120	228
Aspect Ratio = 300+	Flexural Modulus (GPa)	6.5	8.5

STANDARD COMPOUNDING PROCESS

ITE VLF PULTRUSION PROCESS

EXTREME ASPECT RATIO - VLF

Secret to success: the fiber skeleton

PA 66 + 60% VLF Seat Belt Tension Housing

MPACT PERFORMANCE

Nylon 6/6, 40% Glass Fiber

MPACT PERFORMANCE

PPS + Glass Fiber Impact

TR METAL REPLACEMENT

Metal vs. VLF shifter comparison

METAL REPLACEMENT

Metal vs. VLF shifter comparison

BTR SHORT GLASS REPLACEMENT

	30% Short (40% VLF PP	
	(Dry as Molded)		
Tensile Strength (MPa)	185	125	124
Flexural Modulus (GPa)	8.4	5.9	8.5
Izod Impact (J/m)	120 135		228
Specific Gravity	1.:	1.21	
HDT (°C)	25	155	

RTR NEW TECHNOLOGIES

- · Improvements in Short Glass Fiber PP (XP Series)
- New "Light and Tough" materials for lightweighting (LT Series)

IMPROVEMENTS IN SGF PP

IMPROVEMENTS IN SGF PP

ITTE IMPROVEMENTS IN SGF PP

LIGHT AND TOUGH (L&T) COMPOUNDS

- The LT Series is the fastest, easiest, and most cost effective drop-in solution for customers who want to lightweight existing GF compound parts.
 - Benefits:
 - Up to 10% reduction in density while maintaining mechanical properties
 - Weight savings are not wall thickness dependent
 - Drop-in solution for existing tools
 - · Side Benefits:
 - Improved surface finish vs. foaming
 - Reduced warp

ITT LIGHT AND TOUGH VLF PP

TECHNOLOGY	30% SGF	30% VLF	L&T VLF
DENSITY, g/cm3 (ISO 1183)	1.12	1.13	1.02
Tensile Strength, MPa (23 deg C, ISO 527)	75	110	101
FLEXURAL MODULUS, GPa (23 deg C, ISO 178)	5,000	6,500	6,800
IZOD NOTCHED, KJ/m ² (ISO 180/1A)	11	21	21

SUMMARY

Modifiers

- Polymer Blends overcome morphology deficiencies
 Impact Modifiers increase impact but reduction in
- strength/stiffness

Fillers

· Performance driven by aspect ratio

VLF

Excellent metal replacement high end polymer replacement technology

Overall: Combinations of technologies result in balancing of properties and requirements

