

KING OF PRUSSIA / PENNSYLVANIA (PHILADELPHIA AREA)

YOUR GLOBAL COMPOUNDER OF CUSTOM ENGINEERED THERMOPLASTICS

2017

Introduction to RTP Company: Your Global Compounder of Custom Engineered Thermoplastics

Bob Williams | Regional Sales Manager bwilliams@rtpcompany.com (484) 459-1608

) 8:00 a.m.

RTP GLOBAL MANUFACTURING

RTP Company operates **18 production plants** and has sales offices in major commerce centers around the world.

RTR ESP[™] LOCATIONS

Engineered Sheet Products[™] (ESP[™]), a division of RTP Company, manufactures **specialty engineered sheet**.

<section-header><section-header><section-header><section-header><image><image><list-item>

RTR PRODUCT FAMILIES

Compounds formulated to meet performance requirements, from one property to multiple technologies

Introduction to Engineered Thermoplastics

Steve Maki | VP of Technology smaki@rtpcompany.com (507) 474-5371

INDEPENDENT SPECIALTY

 $\mbox{Compounder} \rightarrow \mbox{We blend thermoplastic resins with fillers, additives, and modifiers}$

Specialty \rightarrow We create engineered formulations

 $\textbf{Independent} \rightarrow \text{We}$ are unbiased in our selection of raw materials

Semi-Crystalline

Х

Х

Х

1	MORPHOLO CHARACTE	GY RISTICS	
	Lens? Fuel Float? Precision Printer Chassis? Tool Housing? Multiple Pin Connector? Pulley? Grease Fitting? Laptop Cover?		
		Amorphous	Semi-Crystalline
	Low Shrinkage	Х	
	Low Warpage	Х	
	Tight Tolerances	Х	
	Transparency	Х	
	Mold Flow Ease		X
	Chemical Resistance		X
	Wear Resistance		X

MORPHOLOGY C THERMOPLASTIC	0F CS
Amorphous	Semi-Crystalline
Polyetherimide (PEI)	Polyetheretherketone (PEEK)
Polyethersulfone (PES)	Polyphenylene Sulfide (PPS)
Polysulfone (PSU)	Polyphthalamide (PPA)
Amorphous Nylon	Polyamide (PA/Nylons)
Polycarbonate (PC)	Polybutylene Terephthalate (PBT)
Acrylic (PMMA)	Polyethylene Terephthalate (PET)
Acrylonitrile Butadiene Styrene (ABS)	Acetal (POM)
Styrene Acrylonitrile (SAN)	Polylactic Acid (PLA)
High Impact Polystyrene (HIPS)	Polypropylene (PP)
Polystyrene (PS)	Polyethylene (HDPE, LDPE, LLDPE)

Introduction to Engineered Thermoplastics - Steve Maki

PLASTIC SELECTION PROCESS

Step 1: Use Resin Morphology

Step 2: Use Thermal & Cost Requirements

Step 3: Fine Tune & Special Features

RTP AMORPHOUS RESINS

Morphology Features -- Low Shrink, Low Warp, Tight Dimensional Tolerances, Transparent (except HIPS & ABS), Poor Chemical & Abrasion, Poor Flow in Thin Mold Sections

Amorphous	Special Features
Amorphous Nylon	Transparent/good chem. resistance
Polycarbonate (PC)	Optical transparency/high impact
Acrylic (PMMA)	Optical transparency/UV stable
Acrylonitrile Butadiene Styrene (ABS)	High impact/high gloss/opaque
Styrene Acrylonitrile (SAN)	Transparent/mod. chem. resistance
High Impact Polystyrene (HIPS)	Moderate impact/opaque
Polystyrene (PS)	Transparent/brittle

Commodity (<\$1.50) • Engineering (\$1.50-\$4.00)

Morphology Features Abrasion Resistance, Goo Dimensions, Opaque	LINE RESIN Excellent Chemical Resistance, Excellent of Flow in Thin Mold Sections, Poor
Semi-Crystalline	Special Features
Nylon 6/12	Less Sensitive to humidity vs. 6&6/6
Nylon 6/6	Better thermal vs. 6/humidity Dep
Nylon 6	Hides GF/strong but humidity Dep
Polybutylene Terephthalate (PBT)	Good electricals/easier to mold
Polyethylene Terephthalate (PET)	Good electricals/difficult to mold
Acetal (POM)	Low wear & friction/high fatigue
Polylactic Acid (PLA)	Green/Low impact & thermal
Polypropylene (PP) Polyethylene (HDPE, LDPE, LLDPE)	Poor low temp impact/mod thermal Good low temp impact

Commodity (<\$1.50) • Engineering (\$1.50-\$4.00)

<section-header><section-header>

<section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header>

RTP CASE STUDY

Automotive Intake Manifold

- Chemical resistance
- Excellent strength, stiffness & impact
- Moderate heat resistance
- Moderate cost OK

RTP CASE STUDY

Oil Pan

- Chemical resistance
- Excellent strength, stiffness & impact
- Moderate heat resistance
- Moderate cost OK
- Extremely tight dimensions & flat

RTP CASE STUDY

Electrical Connectors

- Good flow in thin walls
- Excellent electrical properties
- Dimensionally stable in humidity
- Moderate cost OK

RTR CASE STUDY

Conveyor Rollers

- Good abrasion resistance
- · Low wear & friction
- Moderate cost OK

RTP CASE STUDY

Printer Gears

- Extremely tight dimensions
- Moderate cost OK
- Good abrasion resistance
- Low wear & friction

RTP **MORPHOLOGY DEFICIENCIES** Semi-Crystalline Amorphous Х Low Shrinkage D Х D Low Warpage **Tight Tolerances** Х D Х Transparency D Mold Flow Ease D Х Х Chemical Resistance D Х Wear Resistance D

RTP CASE STUDY

Oil Pan

- Chemical resistance
- Excellent strength, stiffness & impact
- Moderate heat resistance
- Moderate cost OK
- Extremely tight dimensions & flat

Nylon 66 + 15% GF + 25% Mineral

GTR CHEMICAL RESISTANCE/MOLD

Can We Improve Chemical Resistance & Mold Flow of Amorphous Resins?

Alloy PC with ABS RTP 2500 A Series					
	PC	PC/ABS			
Tensile Strength, psi	9000	8900			
Flexural Mod, E6 psi	0.34	0.40			
Izod Impact, ft Ib/in	15	13			
HDT @ 264 psi, °F	270	210			
Fuel Resistance	Poor	Poor			
Melt Flow, gm/10 min	10	15			
Clarity	Transparent	Opaque			

ALLOYING

Alloy PC With Polyester (PBT or PET) RTP 2099 X 63578 B

	PC	PC/PBT
Tensile Strength, psi	9000	8700
Flexural Mod, E6 psi	0.34	0.35
Izod Impact, ft lb/in	15	15
HDT @ 264 psi, °F	270	250
Fuel Resistance	Poor	Fair
Melt Flow, gm/10 min	10	20
Clarity	Transparent	Opaque

RTP WEAR RESISTANCE

Can We Make An Amorphous Resin Wear Resistant?

	RICATED		
Compo	ound PT RTP 300	FE Into PC TFE 15	
	PC	PC/15 PTFE	Acetal
Wear Factor	560	130	90
Dynamic Coef. of Friction	0.60	0.33	0.40

NEW TECH (HIGH TEMPERATURE) Specialty Torlon Compounds

RTP Company has a license agreement with Solvay Specialty Polymers to manufacture specialty compounds based on Torlon polyamide-imide

Dialing in Mechanical Properties

Karl Hoppe | Senior Product Development Engineer khoppe@rtpcompany.com (507) 474-5367

9:15 a.m.

Tough or Strong? Short or Long? Dialing in Mechanical Properties - Karl Hoppe

ITTE THE FO	RMULA	
Resin 🕂	Additives	Change in Properties

	PC	PC/ABS (RTP 2500 A)	ABS
ecific Gravity	1.19	1.15	1.06
nsile Strength (MPa)	60	60	45
otched Izod Impact (.I/m)	800	700	270

LYMER BLENDS	
Hearing Tester Toughness and chemical	
resistance	
Polycarbonate/ABS Alloy	3
Strength and toughness of PC with the added chemical resistance of ABS	
	Image: Constraint of the second state of the second sta

	PA 6/6	Impact Modified PA 6/6
Specific Gravity	1.14	1.08
Notched Izod Impact (J/m)	55	900
Tensile Strength (MPa)	80	52
Flexural Modulus (GPa) (Stiffness)	2.8	2.1

00000		PC	PC + 10% Glass Beads	PC + 30% Glass Beads
Beads (Glass)	Specific Gravity	1.19	1.27	1.42
	Tensile Strength (MPa)	60	55	48
	Notched Izod Impact (J/m)	800	100	80
Photo: Potters, Inc. Aspect Ratio = 1	Flexural Modulus (GPa)	2.3	2.6	3.4

		PP	PP + 20% Talc	PP + 40% Talc
1-1-	Specific Gravity	0.91	1.05	1.25
-	Tensile Strength (MPa)	32	32	30
Minerals (Talc)	Notched Izod Impact (J/m)	53	53	43
spect Ratio = 2 - 50	Flexural Modulus (GPa)	1.4	2.6	3.9

Reusable	OW ASPECT RATIO	
Problem:	Warpage prevented smooth operation	
Solution:	Mineral filled Polypropylene	
Benefits:	Reduced warpage Improved functionality	ALLE BARRA

Culte.		PC	PC + 30% Glass Beads	PC + 30% Glass Fiber
	Specific Gravity	1.19	1.42	1.42
Same Afore the Charles	Tensile Strength (MPa)	60	48	124
Fibers (Glass)	Notched Izod Impact (J/m)	800	80	160
Aspect Ratio = 50 - 250	Flexural Modulus (GPa)	2.4	3.4	7.6

CUC.		PP	PP + 40% Talc	PP + 40% Fiber
	Specific Gravity	0.91	1.25	1.21
Sector And the shall	Tensile Strength (MPa)	32	30	82
Fibers (Glass)	Notched Izod Impact (J/m)	53	43	120
Aspect Ratio = 50 - 250	Flexural Modulus (GPa)	1.4	3.9	6.5

Surgery Dr	ill Guide	. /
Problem:	Stiffness and dimensional stability	
Solution:	Glass fiber reinforced Polycarbonate	"
Benefits:	Rigidity Tight tolerances	

		PEEK	PEEK + 40% Glass Fiber	PEEK + 40% Carbon Fiber
	Specific Gravity	1.30	1.61	1.45
	Tensile Strength (MPa)	93	186	265
Carbon Fibers	Notched Izod Impact (J/m)	53	133	91
spect Ratio = 50 - 250	Flexural Modulus (GPa)	3.8	13.8	30.3

Tough or Strong? Short or Long? Dialing in Mechanical Properties - Karl Hoppe

III FIBER COMPARISON- PP	RTP	FIBER	COMP	ARISON	- PP
--------------------------	-----	--------------	------	--------	-------------

	11 4070 01	PP 40% VLF	PP 20% CF
Flexural Modulus (GPa)	6.5	8.5	8.9
Tensile Strength (MPa)	82	124	93
Notched Izod Impact kJ/m ²)	12.1	22.6	5
Specific Gravity	1.21	1.21	1.00

	PA 6/6 60% VLF (Long Fiber)	PA 6/6 30% Carbon Fiber
Flexural Modulus (GPa)	20.0	19.0
Tensile Strength (MPa)	262	248
Tensile Elongation (%)	2.0	2.5
Specific Gravity	1.71	1.27

	PPS 40% Glass	PPS 15% Carbon			
Flexural Modulus (GPa)	15.2	15.9			
Tensile Strength (MPa)	169	172			
Tensile Elongation (%)	1.5	1.1			
Specific Gravity	1.68	1.40			

RTP CARBON FIBER APPLICATION

Brake Rotor Measuring Probe

Problem:	Casting replacement
Solution:	Carbon fiber reinforced PPA
Benefits:	High strengthHigh stiffness

Contraction of the Contraction o		PP + 40% Short Glass	PP + 40% Long Glass
	Specific Gravity	1.21	1.21
	Tensile Strength (MPa)	82	124
Long Glass	Notched Izod Impact (J/m)	120	228
spect Ratio = 300+	Flexural Modulus (GPa)	6.5	8.5

Amorphous		Semi-Crystalline
Polyetherimide (PEI)	Ę	Polyetheretherketone (PEEK)
Polyethersulfone (PES)	lerr	Polyphenylene Sulfide (PPS)
Polysulfone (PSU)	na	Polyphthalamide (PPA)
Amorphous Nylon	8	Polyamide (PA/Nylons)
Polycarbonate (PC)	Cos	Polybutylene Terephthalate (PBT)
Acrylic (PMMA)	Ť	Polyethylene Terephthalate (PET)
Acrylonitrile Butadiene Styrene (ABS)	ICre	Acetal (POM)
Styrene Acrylonitrile (SAN)	as	Polylactic Acid (PLA)
High Impact Polystyrene (HIPS)	es	Polypropylene (PP)
Polystyrene (PS)		Polyethylene (HDPE, LDPE, LLDPE)

Tough or Strong? Short or Long? Dialing in Mechanical Properties - Karl Hoppe

RTR SUMMARY

Modifiers

- · Polymer Blends overcome morphology deficiencies
- Impact Modifiers increase impact but reduction in strength/stiffness

Fillers

· Performance driven by aspect ratio

High Temperature

Range of polymers offer array of performance

Overall: Combinations of technologies result in balancing of properties and requirements

Light and Color: Create. Control. Communicate.

Hannah Fiore | Color Development Engineer hfiore@rtpcompany.com (507) 474-5505

🖕 10:15 a.m.

- Brief introduction to RTP Company Color Division
- Color Fundamentals
 - Three Sciences of Color
 - Evaluation & Control
 - Effective Color Communication
- Beyond the Visible Light
 - Laser Welding
 - Laser Marking
- Questions

RTP TOPICS

- Brief introduction to RTP Company Color Division
- Color Fundamentals
 - Three Sciences of Color
 - Evaluation & Control
 - Effective Color Communication
- Beyond the Visible Light
 - Laser Welding
 - Laser Marking
- Questions

RTP **GLOBAL COLOR CONSISTENCY RTP** RTP COMPANY COLOR DIVISION Color virtually all resins **Color Lab Locations** · Engineering resins USA - Winona, MN; Indianapolis, IN; Fort Worth, TX Styrenic resins Monterrey, Mexico · Polyolefin resins • Beaune, France • Shenzhen and Suzhou, China Color in multiple formats Singapore Masterbatches **Color Control** Precolored resins · Consistent raw materials Cube blends • Identical hardware and software Global database Advanced Color Development Speed · Custom colors Fast color matching service Multiple light sources · Transfers across regions · Regulatory knowledge • UL, FDA, USP, RoHS, etc.

RTR COLORING OPTIONS

Masterbatches

- Concentrated formulation of colorants and/or additives dispersed in a polymer carrier
- Usage defined by let-down ratio or percentage
- Most widely used form to color commodity resins

Precolor

- Colorants are added to the polymer and extruded
- Ready to use as-is

Cube blend

- · Masterbatch is blended with resin
 - Two or more pellet solution

RTP TOPICS

- Brief introduction to RTP Company Color Division
- Color Fundamentals
 - Three Sciences of Color
 - Evaluation & Control
 - Effective Color Communication
- Beyond the Visible Light
 - Laser Welding
 - Laser Marking
- Questions

RTP CHEMISTRY

Dyes

- Soluble
- Migration concerns
- High color strength •
- Transparent •
- Commonly used in: •
 - Styrenic Resins
 - Engineering Resins

Inorganic Pigments

- Large particle size
- Easy to disperse
- Heat stable
- Weak color strength
- · Improved light fastness

VISUAL COLOR EVALUATION Observer • Each person sees color uniquely Light Source • Different spectral distributions (D65, CWF, Incandescent) Background • Contrast difference makes color appear different

RTP VISUAL COLOR EVALUATION

Observer

· Each person sees color uniquely

Light Source

• Different spectral distributions (D65, CWF, Incandescent)

Background

Contrast difference makes color appear different

Viewing Angle

Most common 45°

Keep viewing conditions CONSTANT

TR INSTRUMENTAL COLOR EVALUATION

Numeric Color Modeling

Numeric model provides

- 3 dimensional color space
- Quantify colors numerically
- Can be used for specification, identification, comparison, tolerancing

Several Color Spaces

- CIE 1931 Yxy
- CIE L*a*b* 1976
- CIE LCh
 - CMC I:c 1984

Light and Color: Create. Control. Communicate. - Hannah Fiore

RTR LASER WELDING

Degree of Complexity

- RTP Company has experience with pigment/filler combinations, and loading levels, to support successful welding using both Diode and Nd:YAG lasers
- Color combinations influence complexity of formulation

ITE LASER MARKING

What gives the highest contrasting mark?

Black resin color with light marks:

- PP (Olefins)
- Nylon
- ABS (Specific Grades)
- POM
- PMMA
- And more

In the provided state of the provid

RTP SUMMARY

Create

- RTP Company supplies innovative colors and functional additives to
 assist you in the creation of your application
- · Logos and designs can be created on your part using laser marking

Control

- Our color formulas are controlled by raw materials choices and internal and customer tolerances
- Laser welding of two materials can be done by controlling their IR transmissivity

Communicate

Effective color communication is crucial for color matching and tolerancing

Wear in the World of Plastics

Ben Gerjets | Product Development Engineer bgerjets@rtpcompany.com (507) 474-5381

🖕 11:00 a.m.

RTP AGENDA

- I. Wear Definitions & Test Methods
- II. Friction Definitions & Test Methods
- III. Additive Technologies
- IV. Application Examples
- V. Extreme Conditions Ultra Wear

RTR WEAR DEFINITIONS

Tribology

The Science of the mechanisms of friction, lubrication, and wear of interacting surfaces that are in relative motion

Recall: Sliding surfaces Wear = Loss of material over time

RTP WEAR DEFINITIONS

Adhesive Wear Mechanism

- The primary mechanism for thermoplastic wear
- Characterized by transfer of material from one part to the other caused by frictional heat

RTP. WEAR DEFINITIONS

Abrasive Wear Mechanism

- Caused by a hard material scraping or abrading away at a softer material
- Characterized by grooves cut or gouged into the surface

RTP WEAR TESTING

Wear factor (K): Used to quantify wear resistance. Lower Value = Better Wear Resistance!

$K = W/(F \times V \times T)$

- **K** = Wear Factor: $(in^3-min/ft-lb-hr) \cdot 10^{-10}$ or $(mm^3/N-m) \cdot 10^{-8}$
- **W** = Volume wear: *in*³ or *mm*³
- **F** = Force: *Ib or N*
- **V** = Velocity: *ft/min or m/sec*
- T = Elapsed time: hr or sec 100 Hour Test!

PV = (Pressure · Velocity)
Conditions often used together to characterize severity of a wear environment
000 PV = (40 psi · 50 ft/min)

RTP Wear	B	src	A/	R 7 hu	re	STINO	9	PV (p	si*ft./m	in) Wea	r Facto	or (K)
Vylon 6/6 RTP 200 Series)						Load (lb)	Speed (ft/min)	PV	PV (SI)	Wear Factor (K)	K (SI)	μk
RTP 0200	-	-	-	-	-	8	50	2000	(70)	400	(1811)	0.66
RTP 0200	-	-	-	-	-	10	100	5000	(175)	95	(191)	0.91
RTP 0200	-	-	-	-	-	40	50	10000	(350)	191	(384)	0.60
RTP 0200 SI 2	-	-	-	-	2	8	50	2000	(70)	639	(1284)	0.54
RTP 0200 SI 2	-	-	-	-	2	10	100	5000	(175)	181	(364)	0.78
RTP 0200 SI 2	-	-	-	-	2	40	50	10000	(350)	85	(171)	0.77
RTP 0200 TFE 5	-	-	-	5	-	8	50	2000	(70)	957	(1924)	0.61
RTP 0200 TFE 5	-	-	-	5	-	10	100	5000	(175)	427	(858)	0.77
RTP 0200 TFE 5	-	-	-	5	-	20	100	10000	(350)	76	(153)	0.59
RTP 0200 TFE 10	-	-	-	10	-	8	50	2000	(70)	341	(685)	0.31
RTP 0200 TFE 10	-	-	-	10	-	10	100	5000	(175)	171	(344)	0.28
RTP 0200 TFE 10	-	-	-	10	-	40	50	10000	(350)	156	(314)	0.29
RTP 0200 TFE 18 SI 2	-	-	-	18	2	8	50	2000	(70)	11	(22)	0.20
RTP 0200 TFE 18 SI 2	-	-	-	18	2	10	100	5000	(175)	59	(119)	0.36
RTP 0200 TFE 18 SI 2	-	-	-	18	2	40	50	10000	(350)	18	(36)	0.19
- Excellent Wear	Re	sista	nce	(K= <	75)	- Good V	Vear Resista	nce (K = 75	i – 200)	- Fair Wear Res	sistance (K	= 200 - 400

I. Wear Definitions & Test Methods II. Friction Definitions & Test Methods III. Additive Technologies IV. Application Examples V. Extreme Conditions – Ultra Wear

AGENDA

- I. Wear Definitions & Test Methods
- II. Friction Definitions & Test Methods
- III. Additive Technologies
- IV. Application Examples
- V. Extreme Conditions Ultra Wear

RTP ADDITIVE TECHNOLOGIES

PTFE – Polytetrafluoroethylene (5-20%)

- Workhorse additive solid white powder
- Compatible with nearly all thermoplastic resins

Limitations

- Fluorine content
- · Die plate-out
- · Relatively high loadings
- Cost fluctuation

RTP ADDITIVE TECHNOLOGIES RTP **ADDITIVE TECHNOLOGIES** Silicone – Polydimethylsiloxane (1-3%) PTFE Silicone Boundary lubricant which migrates to the surface over time · Migration rate is viscosity dependent Excellent friction reducer · Best in high speed/low load applications Limitations · Limited use in decorated parts · Poor adhesion of paint or print inks • Bad for electrical applications Can foul contacts

RTP ADDITIVE TECHNOLOGIES

		PC		PA 6/6			POM			
	Unfilled	PTFE (20%)	Silicone (2%)	Unfilled	PTFE (20%)	Silicone (2%)	Unfilled	PTFE (20%)	Silicon (2%)	
Specific Gravity	1.19	1.31	1.19	1.14	1.26	1.13	1.41	1.52	1.40	
Tensile Strength (psi)	8,500	7,000	8,500	12,000	9,500	11,000	8,700	6,500	7,800	
Flexural Modulus (psi)	340,000	320,000	350,000	400,000	400,000	400,000	350,000	300,000	350,00	
Notched Impact (ft-lb/in)	7.5	3.5	10.5	1.0	1.0	1.0	1.5	1.0	1.5	

RTR ADDITIVE TECHNOLOGIES

Fibers protect the polymer, but may be abrasive against the mating material

Aramid

Carbon Aluminum Contact Surface

APWAPLUS: AIPOlymeric Wear Alloy Aunique polymer alloy technology offering: • Improved wear and friction performance • Especially effective in <u>plastic vs. plastic</u> wear • Good retention of base resin physical properties • Lower specific gravity than PTFE • Reduction/elimination of plate-out associated with PTFE

Wear in the World of Plastics - Ben Gerjets

I. Wear Definitions & Test Methods II. Friction Definitions & Test Methods III. Additive Technologies IV. Application Examples V. Extreme Conditions – Ultra Wear

BTP EXTREME CONDITIONS

Ultra Wear Products Developed for Demanding applications

Transmission Seal High Load Thrust Washers Pipe Gaskets

Off-Shore Drilling Construction Vehicles Oil and Gas Industry

EXTREME CONDITIONS RTP

1. Develop a series of high performance RTP products ideal for "Ultra" testing

Resi	ns	Additives						
• PEEK	• PPS • PPA	Carbon FiberGraphiteAramid Fiber	 PTFE Ceramic MoS₂ 					

- 2. Compare RTP Ultra Products with industry leading wear resistant materials
 - Rulon[®] J Rulon[®] LR
- Vespel[®] SP-21 Vespel[®] SP-211
- Stanyl[®] TW371
- Torlon[®] 4301 Torlon[®] 4630

RTP E	XTR	ME	CON	IDITI	ONS			
	Alt of the second se	24						
	Torlon 4301 (PAI)	Vespel SP-21 (TS PI)	Rulon J (PTFE)	Stanyl TW371 (PA46)	RTP 1300 AR 15 TFE 15 (PPS)	RTP 4085 TFE 15 (PPA)	RTP 2285 HF TFE 15 (PEEK)	RTP 2299 X 125404 A (PEEK)
Manufacturer	Solvay	DuPont	St. Gobain	DSM	RTP	RTP	RTP	RTP
Polymer	PAI	TS PI	PTFE	PA 4/6	PPS	PPA	PEEK	PEEK
Generic Description	PTFE/Grph	Grph	PI Pwdr	PTFE	AF/PTFE	CF/PTFE	CF/PTFE	CF/Ceramic
Strength	G	G	Р	F	F	E	E	G
Stiffness	G	G	Р	Р	F	E	E	G
~ Cont. Use Temperature	>500 °F (260 °C)	>600 °F (316 °C)	~550 °F (290 °C)	~350 °F (177 °C)	~400 °F (205 °C)	~375 °F (190 °C)	~475 °F (246 °C)	~475 °F (246 °C)
Chem. Resistance	E	E	E	Р	E	G	E	E
Processing	17 Day Cure	Parts Only	Parts Only	G	G	G	G	G
Friction	G	G	E	G	E	F	G	G
Wear resistance	E	E	E	G	G	G	G	E
Moisture sensitivity	Р	G	E	Р	Е	G	G	G

Get Amped Up about Conductive Plastics

Ned Bryant | Senior Product Development Engineer nbryant@rtpcompany.com (507) 474-5361

🖕 1:30 p.m.

ITP WHAT IS CONDUCTIVITY?

Conductivity

- Electrical A material's ability to carry electric current
- Thermal A material's ability to conduct thermal energy

Resistivity

 How strongly a material opposes the flow of an electric current

MIGRATORY ANTI-STATIC AGENTS Migrating surfactant based – not bonded to resin Temperature & humidity dependent Best at room temperature & high humidity Colorable Liquids & semi-solids with low boiling points Compatible only with low temp. resins Olefins, Styrenics, PVC Economical/commodity materials

CONDUCTIVE CARBON BLACK Characterized by: Structure Size of particles Porosity Surface Chemistry

RTR KEY ADDITIVE COMPARISON

NCCF

compounds

- Higher cost

- Less colorable

SSF

- Minimal affect on neat resin properties
- Neat resin shrinkage
- Good shielding
- Cost effective
- Colorable

- Properties similar to carbon fiber

- High shielding performance

RTR EMI SHIELDING METHODS

- Actual metal housing
- Metallic paint/metal coatings
 - Traditional TV Cabinets
- Metal foil/screen
 - Microwave Oven
- Polymer compound
 - Increases design freedom, part consolidation
 - Eliminates secondary operations & reduces part cost

RTP **METAL OR PLASTIC** Metal Plastic - High Thermal Conductivity No Corrosion - High Electrical - Lower Density Conductivity (EMI - Design Freedom (Integration of Shielding) Functions) Very High Stiffness - High Tool Life Time Very Low Creep - Good Chemical Resistance - Low CLTE - Acoustic Dampening - High Strengths at High - Consolidation of Parts Temperatures - Narrow Tolerances are Realistic

RTR ELIMINATE CONDUCTIVE PAINT

- Review of Conductive Paint:
 - Durability (flaking and scratching)
 - Potential thin spots in coating
 - Yield fallout from masking operation
 - Environmental considerations
 - Additional process
 - Additional supplier
 - Additional \$\$\$

RTP METAL REPLACEMENT

EMI 300 Series (PC):

- UL Listed (V-0 @ 1.5 mm)
- SE 30-70 dB
- GF from 0% 20%
- Economical alternative to metal or coated plastics

RTR COMBINING EMI & THERMAL CONDUCTIVITY (TC)

- SSF is a poor thermal conductor
- Thermal fillers can provide some EMI shielding
- Custom formulations can balance design requirements

Formulation	(300 MHz – 1.5 GHz)	(Through-plane)	(In-plane)
EMI 2562	60 – 85 dB	0.3 W/mK	
299X124222C	30 – 55 dB	3.4 W/mK	25 W/mK
299X124222D	32 – 38 dB	3.1 W/mK	19 W/mK
299X124222E	40 – 60 dB	5.3 W/mK	32 W/mK
299X124223B	45 – 55 dB	1.4 W/mK	4.1 W/mK

ПТР ТС	ADVANTAGE	S			
Property	Unfilled Plastics	TC Compounds	Aluminum		
тс	0.1 – 0.2 W/m-K	1 – 35 W/m-K	150 – 250 W/m-K		
Isotropic TC	No	No	Yes		
Manufacturing processes	Manufacturing Injection molding, processes extrusion		Casting, machining, extrusion		
Design freedom	Unlimited	Unlimited	Limited by mfg processes		
Weight (g/cc)	0.9 – 1.1	1.5 – 1.8	2.7		
Shipping cost	reduced	reduced	standard		
Electrical isolation	Yes	Possible	Not possible		
Color	Unlimited	White, Gray & Colors	Gray only		

RTR TC FILLER OPTIONS

Electrically Conductive	Electrically Isolating
 Utilizes graphite and metallic fillers Allows for higher thermal conductivity at a lower cost Provides no dielectric strength to assembly Typically produces black colored compounds Thermal conductivity: Through-plane k = 1.0 to 8.0 W/mK In-plane k = 2.0 to 35.0 W/mK 	 Utilizes ceramic fillers Compromises some thermal conductivity to maintain electrical isolation Dielectric strength allows for lower cost, more creative LED designs Good choice when white color is desired Thermal conductivity: Through-plane k = 0.5 to 2.5 W/mK In-plane k = 1.0 to 10.0 W/mK

CONDUCTIVE MODIFIERS: PROS

Technology	Pros	Cons
Migratory Antistats	• Economical	Non-permanent Process temperature limited Humidity dependent
Inherently Dissipative Polymer PermaStat [®]	Permanent Transparent availability Colorable No loss of mechanical properties	Limited to dissipative range Process temperature limited
Carbon Black	Economical Dissipative or conductive Resists Tribocharging	Sloughing Black only Lower impact strength
Carbon Fiber	Dissipative or conductive Reinforcing Non-sloughing	Anisotropy Poor tribocharging
Carbon Nanotubes	Dissipative or conductive Superior tribocharging performance Minimal effect on mechanical and viscosity Low Liquid Particle Count (LPC)	Cost Black only
Metallic Additives	EMI/RFI shielding Highly conductive	Limited colorability Higher specific gravity
Ceramic Additives	Provide Thermal Conductivity Electrically insulative	High loadings required Reduction in physical properties

Everything You Need to Know about TPEs

Paul Killian | Business Manager - TPE pkillian@rtpcompany.com (507) 474-5490

b 2:30 p.m.

BLOCK COPOLYMERS -MECHANISM

Block copolymer based TPEs are made of polymers that have both hard (semi-crystalline or glassy) blocks and soft (amorphous) blocks along the backbone.

s-s-s-s-h-h-h-h-s-s-s-s-h-h-h-h

In the bulk, as they cool from the melt, the hard blocks will coalesce into crystalline or glassy domains creating physical crosslinks.

The soft blocks are left to form amorphous rubbery domains that provide the elastomeric bridges between the crystalline domains.

BLOCK COPOLYMERS -RTP **EXAMPLES** Styrenic block copolymers "SBC" SBS, SEBS, SIS, SIBS, SEEPS (neat rubber) Rarely used in their neat form Polyolefin elastomer "POE" Thermoplastic urethane "TPU" Copolyether-ester "COPE" Polyether-block-amide "COPA" or "PEBA"

BTP BLENDS & ALLOYS - EXAMPLES

Styrenic block copolymers "SBC"

- SBS, SEBS, SIS, SIBS, SEEPS RTP 2700 S Series
- Most frequently compounded with PP, PE, or POE

Bondable TPES

- Polabond[™]
- Nylabond[™]

RTP FOCUS – SBC BASED TPES

COMPOSITION

OIL (white mineral, other) SBC POLYMER(S) (type, MW, and structure) FILLER (CaCO3, talc, none) POLYPROPYLENE (lots of choices) Stabs, pigments, etc

Elasticity- Highly elastic to "dead" Versatility- Broad range of customizations Low temp and RT - Great CS and flexibility Cost- General purpose to boutique compounds Aesthetics- Excellent moldability, consistency Colorability- Very bright colors possible Bond to PP

DESIGN FLEXIBILITY

Hardness - Gels (Shore OOO) to 50D Viscosity - Extrusion to ultra-high flow Clarity - Opaque to water clear Properties - Tailored elasticity, strength Feel - Super grippy to dry Fillers - Throw in the kitchen sink

LIMITATIONS

STRENGTHS

Oil resistance- High affinity for absorption High Temp- Max CUT ~100C High Temp #2- Properties drop off as temp ↑ Reputation- A few bad apples . . . Balance – Formulations flexibility is capped by inverse requirements - no free lunch

	CUS – TPVs	
COMPOS	SITION	DESIGN FLEXIBILITY
EPDM RUBBER POLYPROPYLENE FILLER CURE PACKAGE Oil Stabs, pigments,ete	(non-vulcanized bale) (usually GP grades) (CaCO3 or talc, low %) (phenolic, peroxide, etc) (generally low % add)	Hardness - 35A to 50D ALLOYS Viscosity - Shear dependent flow Clarity - Opaque, nat color vs cure pkg Properties - Driven by hardness Feel - Most "rubber-like" feel Fillers - Crosslinked EPDM limits filler
STRENG "Industrial" – High Long term s Great inher Chemical a Rubber-like – Most	THS er temp property retention sealability (think auto) ent UV stability nd oil <i>resistance</i> similar TPE to rubber and ard products and	LIMITATIONS Customization- Technology and mfg limited Aesthetics- Shear sensitivity and gate defects RM flexibility- TPV does not drive inputs Color- Opaque natural, cure technology
stocks Bond to PP	andard products and	Griven Regulatory vs Cost- Control capable, but "true" TPV has major cost implications

RTP TPE ≠ RUBBER

Keep in mind:

This is a broadbrush of many (very) different technologies that make up generic "TPE", relative to many (very) different technologies making up thermoset elastomers.

PROS	CONS
Recyclable	High Temp performance
Mass reduction	Material cost
Manufacturing cost	Elastomeric properties
Design flexibility	No in-house compounding

TPEs are not a one-to-one replacement for Thermoset Elastomers

Proper material selection is highly dependent on the application requirements, design, and ability to take advantage of the strengths inherent to TPE or Thermoset Elastomers

	ADDITIVE INCORPORATION
	Color Conductive Structural Wear FR
PEBA (RTP 2900)	RTP Company's Bread & Butter, Applied to TPE
COPE (RTP 1500) TPU (RTP 1200)	Strong market leadership Leverage expertise and resources Deliver unique solutions & functionality
(RTP 2300) TPV (RTP 2800) SBC (RTP-2700)	Precolor anything Conductive anything Glass RTPU Wear TPU / COPE CoPE Conductive anything Glass RTPU Wear TPU / COPE CoF modified TPEs FR TPEs ATEX Bondables Density modified
2-Shot (RTP 6000) TEO (RTP 2600)	 Side Benefit - Uniquely Experienced with all TPE chemistries Technical acumen to create custom formulations and alloys Culture of customer co-development – create what you NEED

WHAT TO TODAY	TAKE AWAY FROM
RTP 2700 S - SBCs	 Common stand-alone TPE; 20A to 90A hardness 2700 S – higher cost, lower gravity, translucent 2740 S-xx HF – lower cost, higher gravity, opaque Bonds to PP; Custom tailoring possible Temp limited ~100C
Permaprene TM -TPV Alloys	 2800 B-xx HF - TPV offset in most non-auto applications 45A to 50D hardness, can be FDA 2840 B -xx - VA/VE where TPV over-engineered Good chemical resistance, smooth feel, extrusion
Nylabond ™ Polabond ™	 6091 – TPV based PA bonding, lots of auto approvals 125 °C CUT, 55A to 85A,campaign products 6092 – in development, targeting Powertool market 6041 – TPV based polar bondable, high performance 6042-xx HF – Cost effective, excellent bonding
Specialty	Elastomeric + Any RTP Company core competency Conducive to "typical" RTP Company sales process

RTP APPLICATION GUIDELINES

- What is the operating temperature range for my application?
- What chemical and/or environmental exposures might there be?
- What are the key performance requirements for the application (beyond just shore hardness)?
- What kind of process will be used to produce final parts?

Answers to Your Burning Questions: Flame Retardants and Regulations

Jesse Dulek | Product Development Engineer jdulek@rtpcompany.com (507) 474-5502

3:15 p.m.

RTR OVERVIEW

- Thermoplastic Flammability
 - Flame Retardant Additive Chemistries and Mechanisms
- Testing Standards
- Aerospace Requirements
- Case studies

HALOGENATED FR MECHANISM

- Halogenated technology inhibits the chemical reaction in the gas/vapor phase
- Various molecules that efficiently get large amounts of free radicals to the gas phase

- Thermoplastic Flammability
 - Flame Retardant Additive Chemistries and Mechanisms
- Testing Standards
- Aerospace Requirements
- Case studies

Classification Criteria	V-0	V-1	V-2	
Number of bar specimens	5	5	5	
Maximum flame time per specimen per flame application, sec	10	30	30	20 ± 1 mm 10 ± 1
Maximum total flame time 5 specimens, 2 ignitions, sec	50	250	250	BURNER 300 ± 10 mm
Specimen drips, ignites cotton	No	No	Yes	6 mm max.
Maximum afterglow time per specimen, sec	30	60	60	
Burn to holding clamp	NO	NO	NO	

BUILDING / INDUSTRIAL

Requirements focus on:

· Low smoke, heat release, burn rate, flame spread

Various standard that apply:

• UL2043, UL723/ASTM E84, ASTM E1354, NFPA 701, FM 4996, CAL TB133

Applications

• Wall coverings, furniture, plenum, pallets, storage systems, roofing, floor coverings, ventilation

RTR OVERVIEW

- Thermoplastic Flammability
 - Flame Retardant Additive Chemistries and Mechanisms
- · Testing Standards
- Aerospace Requirements
- Case studies

AIRCRAFT INTERIORS FR

All Commercial Aircraft (FAR 25.853 (a))

- Appendix F, Part 1, (a)(1) = Interior compartments occupied by crew & passengers
 - (i) = 60 second Vertical Burn Test
 - Ceiling & Wall Panels, Partitions, Galley Structure, Large Cabinet Walls, Structural Flooring, Stowage Compartments
 - (ii) = 12 second Vertical Burn Test
 - Floor Covering, Textiles, Seat Cushions, Paddings, Fabric, Leather, Trays, Galley Furnishings, Electrical Conduit, Air Ducts, Joint & Edge Covering, Trim Strips, & Others

AIRCRAFT INTERIORS FR REQUIREMENTS (CONT.)

All Commercial Aircraft (FAR 25.853 (a))

- Appendix F, Part 1, (a)(1) = Interior compartments occupied by crew & passengers
 - (iv) = 15 second Horizontal Burn Test <2.5 in/min
 - Clear Plastic Windows & Signs, Parts Made From Elastomers, Edge Lighted Instruments, Seat Belts, Containers/Bins/Pallets, and Others
 - (v) = 15 second Horizontal Burn Test <4.0 in/min
 - Small parts that would not contribute significantly to propagation of a fire (Knobs, Handles, Rollers, Clips, Grommets, Rub Strips, Pulleys and Others)

<section-header>

AIRCRAFT INTERIORS FR REQUIREMENTS (CONT.)

Commercial Aircraft With Passenger Capacities > 20 (FAR 25.853 (d))
FR Reqs same as Appendix F, Part 1, (a)(1) PLUS below for interior ceiling & wall panels, partitions, galley structure, and large cabinets & stowage compartments
Appendix F, Part 4
Ohio State University (OSU) Heat Release Test

- 45 kWminutes/m² total average heat release in first 2 minutes
- 75 kW/m² peak heat release (Many specs require <65 kW/m²)
Appendix F, Part 5
NBS Smoke Density Test
- 200 average Ds (3 specimens measured at 4 minutes)

RTP STRATEGY **Product Priorities:** Weight Reduction · Stow Bins, Seating, Lavatory, Galley, Cockpit Controls, etc. Part Consolidation & Metal-to-Plastic Conversion Economical Low-Smoke/Low-Toxicity Materials · Polyamide, Polypropylene, etc. · Custom Formulations & Alloys/Blends High Strength/Modulus Materials · Fasteners, Clamps, Brackets, etc. Custom Colored, OSU Materials . • PEI. PES. PEEK. PPS. PPSU Lightning Strike Compounds ECO/Green Initiatives (Carbon Fiber Recycling) ٠

TRADITIONAL AIRCRAFT RTP **RTP** STRATEGY INTERIOR MATERIALS **Application Priorities:** PEEK (Victrex PEEK[®], Solvay KetaSpire[®]) Aircraft Interiors • PEI (Sabic Ultem®) Seating – Armrests, Tray Table Arms, Actuation Components Challenges Door Frame Seals/Bumpers Stow Bin Brackets Cost Trim/Rub Strips Availability Lavatory Components Color Galley Components Surface Aesthetics Flight Controls Processability • Engine Nacelles & Fuel Systems • Brackets, Fittings, etc. · Fasteners, Cable Ties, and Other Fluid Systems • Electronics Housings

AIRCRAFT INTERIOR MATERIALS
RTP Company Expanded Portfolio
• PEEK
• PEI
• PPS
• PPSU
• PES
• PPS
 Polyamides/Nylons (6/6, 6/12, 12, etc.)
• PC
PC/ABS
• PP

ENGINEERED COMPOUNDS	15 Second Horizontal Burn	12 Second Vertical Burn	60 Second Vertical Burn	Smoke Density	Toxic Gas Emission	OSU Heat Release (Reinforced)	OSU Heat Release (Unreinforces
RTP100-Series Compounds (Polypropylene)	Pass	Pass		Pass	Pass	1.5	•
RTP 200-Series Compounds (Polyamide 6/6)	Pass	Pass	Pass	Pass	Pass		•
RTP 200 D-Series Compounds (Polyamide 6/12)	Pass	Pass	Pass	Pass	Pass	-	
RTP 200 F-Series Compounds (Polyamide 12)	Pass	Pass	Pass	Pass	Pass		•
RTP 300-Series Compounds (Polycarbonate)	Pass	Pass	Pass	Pass	Pass		-
RTP 1300-Series Compounds (Polphenylene Sulfide)	Pass	Pass	Pass	Pass	Pass	Pass	-
RTP 1400-Series Compounds (Polyethersulfone / Polyphenylsulfone)	Pass	Pass	Pass	Pass	Pass	Pass	-
RTP 2100-Series Compounds (Polyetherimide)	Pass	Pass	Pass	Pass	Pass	Pass	•
RTP 2200-Series Compounds (Polyetheretherketone)	Pass	Pass	Pass	Pass	Pass	Pass	
RTP 2200 A-Series Compounds (Polyetherketoneketone)	Pass	Pass	Pass	Pass	Pass	Pass	•
RTP 4000-Series Compounds (Polyphthalamide)	Pass	Pass	Pass	Pass	Pass	-	20
RTP Radel® R-7000 Series Compounds	Pass	Pass	Pass	Pass	Pass	N/A	Pass

RTP ACTIVE INTERIOR PROGRAMS **Commercial Aircraft** Stow Bin Brackets Seat Track Covers Trash Can • Rub & Trim Strips Seat Armrest - --- Galley Lavatory Components Toilet Seats Lighting • Floor Pan Flight Controls Oxygen Box Components PSU Rails HVAC/Air Handling Components Tray Table Arms Seat Actuation Components

RTP OVERVIEW

- Thermoplastic Flammability
 - Flame Retardant Additive Chemistries and Mechanisms
- Testing Standards
- · Aerospace Requirements
- Case studies

RTR APPLICATION EXAMPLE

Commercial Aircraft Stow-Bin Brackets

Features:

- High Stiffness
- Chemical Resistance
- FST & OSU 65/65 Compliance

Benefits:

- Metal-to-Plastic Conversion
- Lightweight
- Reduced Manufacturing Cost

- PEEK
- Glass Fiber
- Colored

APPLICATION EXAMPLE

Lavatory Components

RTP 299 D X 130507 A White & Gray

- Nylon 6/12
- Non-Halogen FR
- Color Matched

Specifications

- 12 second vertical burn
- Smoke Density
- Smoke Toxicity

Engineered Plastics Workshop

RTR FR MEETS OUTDOORS / UV

Market

Consumer

Application

Marine Connector

Problem

Strength/Impact, UV Resistance, Specialty color, UL94 V-0, F1

Solution

PC/PBT – Glass reinforced, UV stabilized, Flame retardant

Benefit

Product was able to pass the required drop impact testing and stringent UL outdoor and flammability ratings

