ENGINEERED **PLASTICS** WORKSHOP Learn About Thermoplastics I Connect with Experts

2017 (BOSTON AREA)

WESTBOROUGH / MASSACHUSETTS

YOUR GLOBAL COMPOUNDER OF **CUSTOM ENGINEERED THERMOPLASTICS**

Everything You Need to Know about TPEs

Paul Killian | Business Manager - TPE pkillian@rtpcompany.com (507) 474-5490

b 2:30 p.m.

BLOCK COPOLYMERS -MECHANISM

Block copolymer based TPEs are made of polymers that have both hard (semi-crystalline or glassy) blocks and soft (amorphous) blocks along the backbone.

s-s-s-s-h-h-h-h-s-s-s-s-h-h-h-h

In the bulk, as they cool from the melt, the hard blocks will coalesce into crystalline or glassy domains creating physical crosslinks.

The soft blocks are left to form amorphous rubbery domains that provide the elastomeric bridges between the crystalline domains.

BLOCK COPOLYMERS -RTP **EXAMPLES** Styrenic block copolymers "SBC" SBS, SEBS, SIS, SIBS, SEEPS (neat rubber) Rarely used in their neat form Polyolefin elastomer "POE" Thermoplastic urethane "TPU" Copolyether-ester "COPE" Polyether-block-amide "COPA" or "PEBA"

BTP BLENDS & ALLOYS - EXAMPLES

Styrenic block copolymers "SBC"

- SBS, SEBS, SIS, SIBS, SEEPS RTP 2700 S Series
- Most frequently compounded with PP, PE, or POE

Bondable TPES

- Polabond[™]
- Nylabond[™]

RTP FOCUS – SBC BASED TPES

COMPOSITION

OIL (white mineral, other) SBC POLYMER(S) (type, MW, and structure) FILLER (CaCO3, talc, none) POLYPROPYLENE (lots of choices) Stabs, pigments, etc

Elasticity- Highly elastic to "dead" Versatility- Broad range of customizations Low temp and RT - Great CS and flexibility Cost- General purpose to boutique compounds Aesthetics- Excellent moldability, consistency Colorability- Very bright colors possible Bond to PP

DESIGN FLEXIBILITY

Hardness - Gels (Shore OOO) to 50D Viscosity - Extrusion to ultra-high flow Clarity - Opaque to water clear Properties - Tailored elasticity, strength Feel - Super grippy to dry Fillers - Throw in the kitchen sink

LIMITATIONS

STRENGTHS

Oil resistance- High affinity for absorption High Temp- Max CUT ~100C High Temp #2- Properties drop off as temp ↑ Reputation- A few bad apples . . . Balance – Formulations flexibility is capped by inverse requirements - no free lunch

	CUS – TPVs	
COMPOSITION		DESIGN FLEXIBILITY
EPDM RUBBER POLYPROPYLENE FILLER CURE PACKAGE Oil Stabs, pigments,ete	(non-vulcanized bale) (usually GP grades) (CaCO3 or talc, low %) (phenolic, peroxide, etc) (generally low % add)	Hardness - 35A to 50D ALLOYS Viscosity - Shear dependent flow Clarity - Opaque, nat color vs cure pkg Properties - Driven by hardness Feel - Most "rubber-like" feel Fillers - Crosslinked EPDM limits filler
STRENGTHS "Industrial"- Higher temp property retention Long term sealability (think auto) Great inherent UV stability Chemical and oil <i>resistance</i> Rubber-like- Most similar TPE to rubber		LIMITATIONS Customization— Technology and mfg limited Aesthetics— Shear sensitivity and gate defects RM flexibility— TPV does not drive inputs Color— Opaque natural, cure technology
stocks Bond to PP		Regulatory vs Cost- Control capable, but "true" TPV has major cost implications

RTP TPE ≠ RUBBER

Keep in mind:

This is a broadbrush of many (very) different technologies that make up generic "TPE", relative to many (very) different technologies making up thermoset elastomers.

PROS	CONS
Recyclable	High Temp performance
Mass reduction	Material cost
Manufacturing cost	Elastomeric properties
Design flexibility	No in-house compounding

TPEs are not a one-to-one replacement for Thermoset Elastomers

Proper material selection is highly dependent on the application requirements, design, and ability to take advantage of the strengths inherent to TPE or Thermoset Elastomers

ADDITIVE INCORPORATION				
	Color Conductive Structural Wear FR			
PEBA (RTP 2900)	RTP Company's Bread & Butter, Applied to TPE			
COPE (RTP 1500) TPU (RTP 1200)	 Strong market leadership Leverage expertise and resources Deliver unique solutions & functionality 			
(RTP 2300) TPV (RTP 2800) SBC (RTP-2700)	Precolor anything Conductive anything Glass RTPU Wear TPU / COPE CoPE Core modified TPEs FR TPEs ATEX Bondables Density modified			
2-Shot (RTP 6000) TEO (RTP 2600)	 Side Benefit - Uniquely Experienced with all TPE chemistries Technical acumen to create custom formulations and alloys Culture of customer co-development – create what you NEED 			

WHAT TO T TODAY	TAKE AWAY FROM
RTP 2700 S - SBCs	 Common stand-alone TPE; 20A to 90A hardness 2700 S – higher cost, lower gravity, translucent 2740 S-xx HF – lower cost, higher gravity, opaque Bonds to PP; Custom tailoring possible Temp limited ~100C
Permaprene TM -TPV Alloys	 2800 B-xx HF - TPV offset in most non-auto applications 45A to 50D hardness, can be FDA 2840 B -xx - VA/VE where TPV over-engineered Good chemical resistance, smooth feel, extrusion
Nylabond ™ Polabond ™	 6091 – TPV based PA bonding, lots of auto approvals 125 °C CUT, 55A to 85A, campaign products 6092 – in development, targeting Powertool market 6041 – TPV based polar bondable, high performance 6042-xx HF – Cost effective, excellent bonding
Specialty	Elastomeric + Any RTP Company core competency Conducive to "typical" RTP Company sales process

RTP APPLICATION GUIDELINES

- What is the operating temperature range for my application?
- What chemical and/or environmental exposures might there be?
- What are the key performance requirements for the application (beyond just shore hardness)?
- What kind of process will be used to produce final parts?

