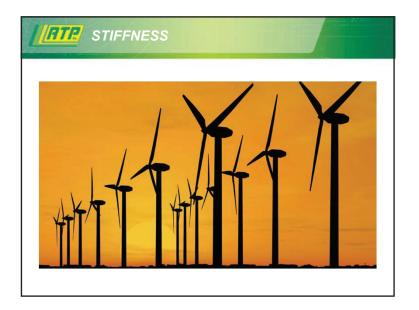
ENGINE REAL EVALUATION OF CONTRACT OF CONTRACT.

KING OF PRUSSIA / PENNSYLVANIA (PHILADELPHIA AREA)

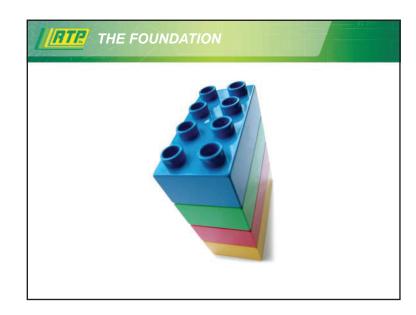
YOUR GLOBAL COMPOUNDER OF CUSTOM ENGINEERED THERMOPLASTICS

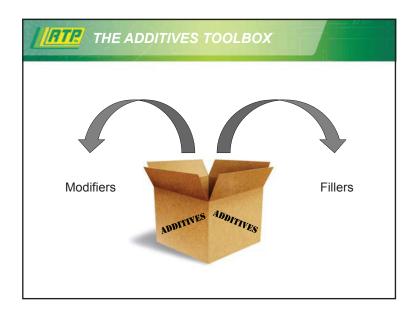
2017

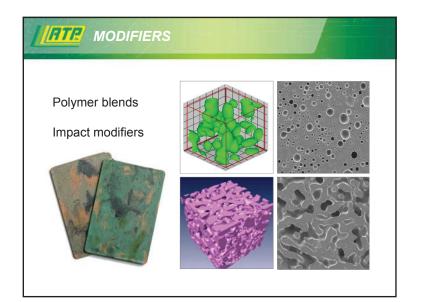

Dialing in Mechanical Properties

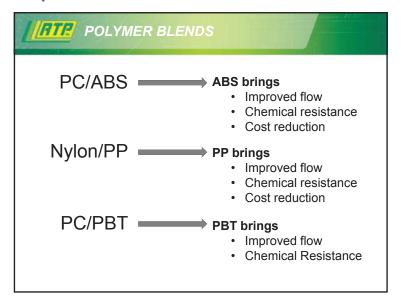

Karl Hoppe | Senior Product Development Engineer khoppe@rtpcompany.com (507) 474-5367

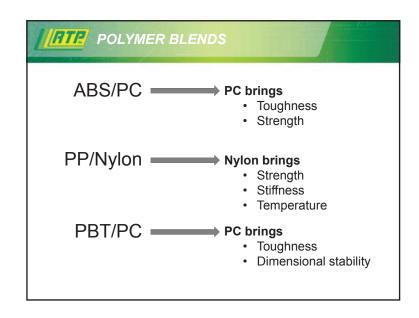
9:15 a.m.

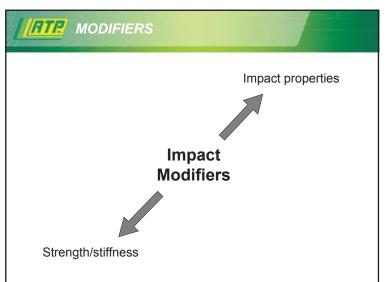



Tough or Strong? Short or Long? Dialing in Mechanical Properties - Karl Hoppe

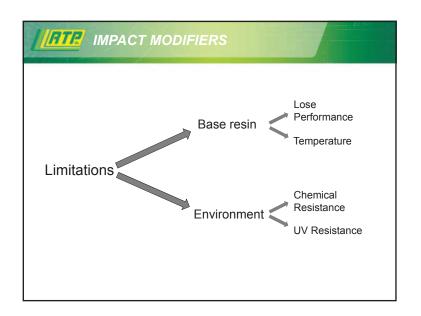


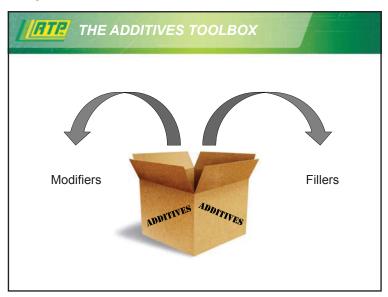

RTR THE FO	RMULA	
Resin 🕂	Additives	Change in Properties



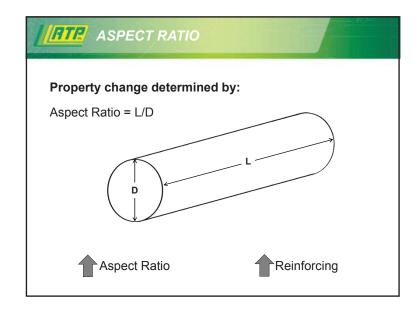


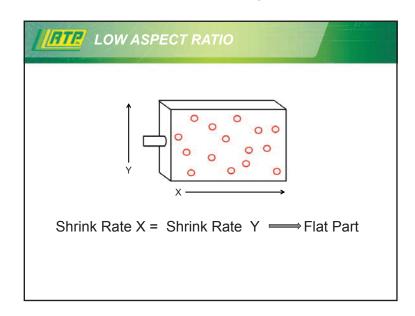
	PC	PC/ABS (RTP 2500 A)	ABS
Specific Gravity	1.19	1.15	1.06
Tensile Strength (MPa)	60	60	45
Notched Izod Impact (J/m)	800	700	270


	DLYMER BLENDS	
Housing fo	r Hearing Tester	
Solution:	Polycarbonate/ABS Alloy	SIA
Benefits:	Strength and toughness of PC with the added chemical resistance of ABS	



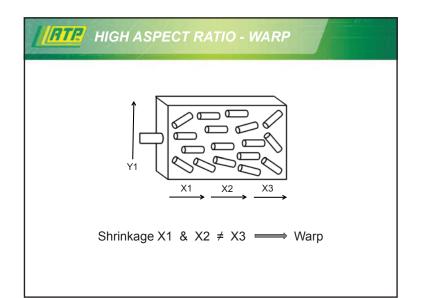
	PA 6/6	Impact Modified PA 6/6
Specific Gravity	1.14	1.08
Notched Izod Impact (J/m)	55	900
Tensile Strength (MPa)	80	52
Flexural Modulus (GPa) (Stiffness)	2.8	2.1

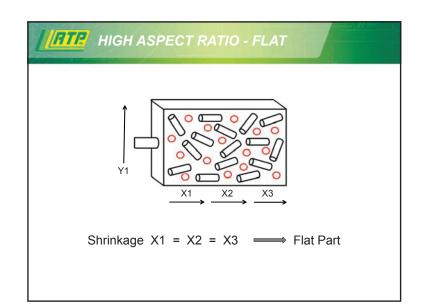




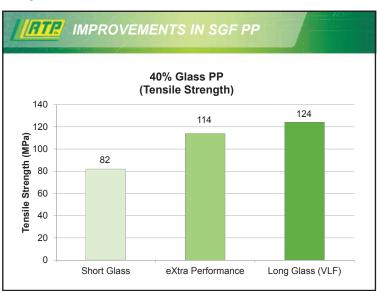
20000		PC	PC + 10% Glass Beads	PC + 30% Glass Beads
	Specific Gravity	1.19	1.27	1.42
	Tensile Strength (MPa)	60	55	48
Beads (Glass)	Notched Izod Impact (J/m)	800	100	80
Photo: Potters, Inc. Aspect Ratio = 1	Flexural Modulus (GPa)	2.3	2.6	3.4

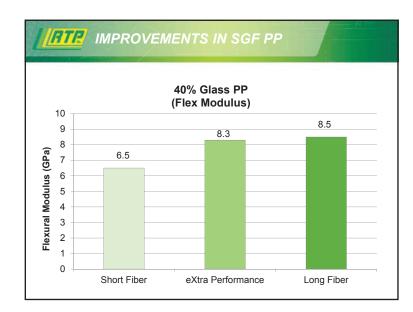
		PP	PP + 20% Talc	PP + 40% Talc
	Specific Gravity	0.91	1.05	1.25
	Tensile Strength (MPa)	32	32	30
Minerals (Talc)	Notched Izod Impact (J/m)	53	53	43
spect Ratio = 2 - 50	Flexural Modulus (GPa)	1.4	2.6	3.9

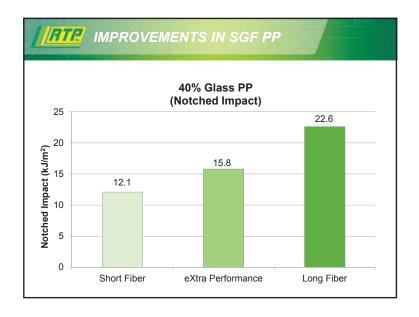

Reusable	Handling Container	
Problem:	Warpage prevented smooth operation	
Solution:	Mineral filled Polypropylene	
Benefits:	Reduced warpage Improved functionality	


C. M.		PC	PC + 30% Glass Beads	PC + 30% Glass Fiber
	Specific Gravity	1.19	1.42	1.42
and a strang the start	Tensile Strength (MPa)	60	48	124
Fibers (Glass)	Notched Izod Impact (J/m)	800	80	160
spect Ratio = 50 - 250	Flexural Modulus (GPa)	2.4	3.4	7.6

CUC.		PP	PP + 40% Talc	PP + 40% Fiber
	Specific Gravity	0.91	1.25	1.21
Same rear the chart	Tensile Strength (MPa)	32	30	82
Fibers (Glass)	Notched Izod Impact (J/m)	53	43	120
spect Ratio = 50 - 250	Flexural Modulus (GPa)	1.4	3.9	6.5


Surgery Dr	ill Guide	
Problem:	Stiffness and dimensional stability	
Solution:	Glass fiber reinforced Polycarbonate	
Benefits:	Rigidity Tight tolerances	





		PEEK	PEEK + 40% Glass Fiber	PEEK + 40% Carbon Fiber
	Specific Gravity	1.30	1.61	1.45
- Second	Tensile Strength (MPa)	93	186	265
Carbon Fibers	Notched Izod Impact (J/m)	53	133	91
Aspect Ratio = 50 - 250	Flexural Modulus (GPa)	3.8	13.8	30.3

Tough or Strong? Short or Long? Dialing in Mechanical Properties - Karl Hoppe

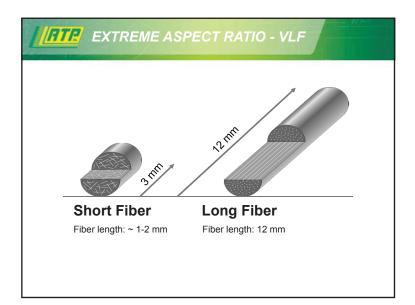
RTP	FIBER	COMPAR	RISON- PP
-----	-------	--------	-----------

	PP 40% GF	PP 40% VLF	PP 20% CF
Flexural Modulus (GPa)	6.5	8.5	8.9
Tensile Strength (MPa)	82	124	93
Notched Izod Impact (kJ/m ²)	12.1	22.6	5
Specific Gravity	1.21	1.21	1.00

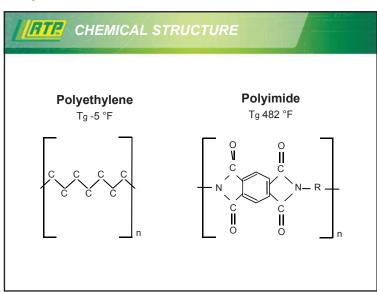
	PA 6/6 60% VLF (Long Fiber)	PA 6/6 30% Carbon Fiber
Flexural Modulus (GPa)	20.0	19.0
Tensile Strength (MPa)	262	248
Tensile Elongation (%)	2.0	2.5
Specific Gravity	1.71	1.27

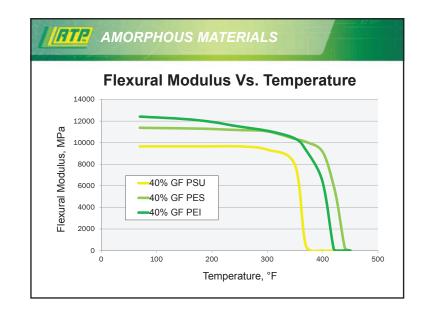
FIBER COMPARISON – PPS		
	PPS 40% Glass	PPS 15% Carbon
Flexural Modulus (GPa)	15.2	15.9
Tensile Strength (MPa)	169	172
Tensile Elongation (%)	1.5	1.1
Specific Gravity	1.68	1.40

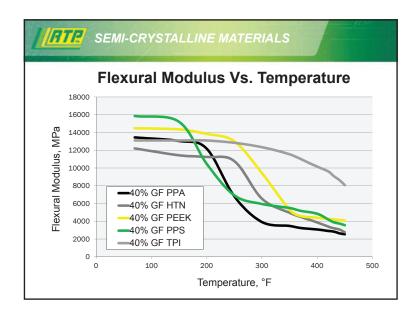
RTP CARBON FIBER APPLICATION

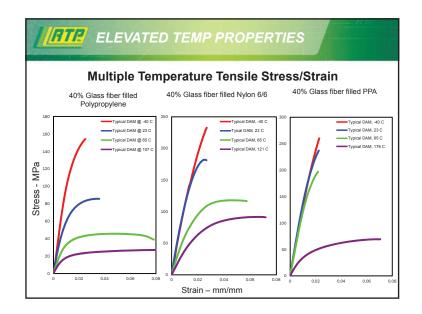

Brake Rotor Measuring Probe

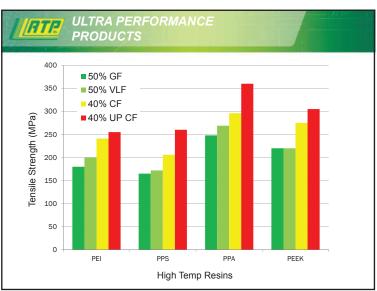
Problem:	Casting replacement
Solution:	Carbon fiber reinforced PPA
Benefits:	High strengthHigh stiffness


		PP + 40% Short Glass	PP + 40% Long Glass
	Specific Gravity	1.21	1.21
~	Tensile Strength (MPa)	82	124
Long Glass Fiber	Notched Izod Impact (J/m)	120	228
Aspect Ratio = 300+	Flexural Modulus (GPa)	6.5	8.5






Amorphous		Semi-Crystalline
Polyetherimide (PEI)	⊒Î	Polyetheretherketone (PEEK)
Polyethersulfone (PES)	Therma	Polyphenylene Sulfide (PPS)
Polysulfone (PSU)	na l	Polyphthalamide (PPA)
Amorphous Nylon	%	Polyamide (PA/Nylons)
Polycarbonate (PC)	Soc	Polybutylene Terephthalate (PBT)
Acrylic (PMMA)	Cost Increases	Polyethylene Terephthalate (PET)
Acrylonitrile Butadiene Styrene (ABS)	icre	Acetal (POM)
Styrene Acrylonitrile (SAN)	às	Polylactic Acid (PLA)
High Impact Polystyrene (HIPS)	es	Polypropylene (PP)
Polystyrene (PS)		Polyethylene (HDPE, LDPE, LLDPE)



Tough or Strong? Short or Long? Dialing in Mechanical Properties - Karl Hoppe

RTR SUMMARY

Modifiers

- · Polymer Blends overcome morphology deficiencies
- Impact Modifiers increase impact but reduction in strength/stiffness

Fillers

· Performance driven by aspect ratio

High Temperature

• Range of polymers offer array of performance

Overall: Combinations of technologies result in balancing of properties and requirements

