

KING OF PRUSSIA / PENNSYLVANIA (PHILADELPHIA AREA)

YOUR GLOBAL COMPOUNDER OF CUSTOM ENGINEERED THERMOPLASTICS

2017

Answers to Your Burning Questions: Flame Retardants and Regulations

Jesse Dulek | Product Development Engineer jdulek@rtpcompany.com (507) 474-5502

3:15 p.m.

RTR OVERVIEW

- Thermoplastic Flammability
 - Flame Retardant Additive Chemistries and Mechanisms
- Testing Standards
- Aerospace Requirements
- Case studies

HALOGENATED FR MECHANISM

- Halogenated technology inhibits the chemical reaction in the gas/vapor phase
- Various molecules that efficiently get large amounts of free radicals to the gas phase

- Thermoplastic Flammability
 - Flame Retardant Additive Chemistries and Mechanisms
- Testing Standards
- Aerospace Requirements
- Case studies

Classification Criteria	V-0	V-1	V-2	
Number of bar specimens	5	5	5	
Maximum flame time per specimen per flame application, sec	10	30	30	20 ± 1 mm 10 ± 1
Maximum total flame time 5 specimens, 2 ignitions, sec	50	250	250	BURNER 300 ± 10 mm
Specimen drips, ignites cotton	No	No	Yes	6 mm max.
Maximum afterglow time per specimen, sec	30	60	60	
Burn to holding clamp	NO	NO	NO	

BUILDING / INDUSTRIAL

Requirements focus on:

· Low smoke, heat release, burn rate, flame spread

Various standard that apply:

• UL2043, UL723/ASTM E84, ASTM E1354, NFPA 701, FM 4996, CAL TB133

Applications

• Wall coverings, furniture, plenum, pallets, storage systems, roofing, floor coverings, ventilation

RTR OVERVIEW

- Thermoplastic Flammability
 - Flame Retardant Additive Chemistries and Mechanisms
- · Testing Standards
- Aerospace Requirements
- Case studies

AIRCRAFT INTERIORS FR

All Commercial Aircraft (FAR 25.853 (a))

- Appendix F, Part 1, (a)(1) = Interior compartments occupied by crew & passengers
 - (i) = 60 second Vertical Burn Test
 - Ceiling & Wall Panels, Partitions, Galley Structure, Large Cabinet Walls, Structural Flooring, Stowage Compartments
 - (ii) = 12 second Vertical Burn Test
 - Floor Covering, Textiles, Seat Cushions, Paddings, Fabric, Leather, Trays, Galley Furnishings, Electrical Conduit, Air Ducts, Joint & Edge Covering, Trim Strips, & Others

AIRCRAFT INTERIORS FR REQUIREMENTS (CONT.)

All Commercial Aircraft (FAR 25.853 (a))

- Appendix F, Part 1, (a)(1) = Interior compartments occupied by crew & passengers
 - (iv) = 15 second Horizontal Burn Test <2.5 in/min
 - Clear Plastic Windows & Signs, Parts Made From Elastomers, Edge Lighted Instruments, Seat Belts, Containers/Bins/Pallets, and Others
 - (v) = 15 second Horizontal Burn Test <4.0 in/min
 - Small parts that would not contribute significantly to propagation of a fire (Knobs, Handles, Rollers, Clips, Grommets, Rub Strips, Pulleys and Others)

<section-header>

AIRCRAFT INTERIORS FR REQUIREMENTS (CONT.)

Commercial Aircraft With Passenger Capacities > 20 (FAR 25.853 (d))
FR Reqs same as Appendix F, Part 1, (a)(1) PLUS below for interior ceiling & wall panels, partitions, galley structure, and large cabinets & stowage compartments
Appendix F, Part 4
Ohio State University (OSU) Heat Release Test

- 45 kWminutes/m² total average heat release in first 2 minutes
- 75 kW/m² peak heat release (Many specs require <65 kW/m²)
Appendix F, Part 5
NBS Smoke Density Test
- 200 average Ds (3 specimens measured at 4 minutes)

RTP STRATEGY **Product Priorities:** Weight Reduction · Stow Bins, Seating, Lavatory, Galley, Cockpit Controls, etc. Part Consolidation & Metal-to-Plastic Conversion Economical Low-Smoke/Low-Toxicity Materials · Polyamide, Polypropylene, etc. · Custom Formulations & Alloys/Blends High Strength/Modulus Materials · Fasteners, Clamps, Brackets, etc. Custom Colored, OSU Materials . • PEI. PES. PEEK. PPS. PPSU Lightning Strike Compounds ECO/Green Initiatives (Carbon Fiber Recycling) ٠

TRADITIONAL AIRCRAFT RTP **RTP** STRATEGY INTERIOR MATERIALS **Application Priorities:** PEEK (Victrex PEEK[®], Solvay KetaSpire[®]) Aircraft Interiors • PEI (Sabic Ultem®) Seating – Armrests, Tray Table Arms, Actuation Components Challenges Door Frame Seals/Bumpers Stow Bin Brackets Cost Trim/Rub Strips Availability Lavatory Components Color Galley Components Surface Aesthetics Flight Controls Processability • Engine Nacelles & Fuel Systems • Brackets, Fittings, etc. · Fasteners, Cable Ties, and Other Fluid Systems • Electronics Housings

AIRCRAFT INTERIOR MATERIALS
RTP Company Expanded Portfolio
• PEEK
• PEI
• PPS
• PPSU
• PES
• PPS
 Polyamides/Nylons (6/6, 6/12, 12, etc.)
• PC
PC/ABS
• PP

ENGINEERED COMPOUNDS	15 Second Horizontal Burn	12 Second Vertical Burn	60 Second Vertical Burn	Smoke Density	Toxic Gas Emission	OSU Heat Release (Reinforced)	OSU Heat Release (Unreinforces
RTP100-Series Compounds (Polypropylene)	Pass	Pass		Pass	Pass	1.5	•
RTP 200-Series Compounds (Polyamide 6/6)	Pass	Pass	Pass	Pass	Pass		•
RTP 200 D-Series Compounds (Polyamide 6/12)	Pass	Pass	Pass	Pass	Pass		
RTP 200 F-Series Compounds (Polyamide 12)	Pass	Pass	Pass	Pass	Pass		•
RTP 300-Series Compounds (Polycarbonate)	Pass	Pass	Pass	Pass	Pass		- 10
RTP 1300-Series Compounds (Polphenylene Sulfide)	Pass	Pass	Pass	Pass	Pass	Pass	-
RTP 1400-Series Compounds (Polyethersulfone / Polyphenylsulfone)	Pass	Pass	Pass	Pass	Pass	Pass	-
RTP 2100-Series Compounds (Polyetherimide)	Pass	Pass	Pass	Pass	Pass	Pass	•
RTP 2200-Series Compounds (Polyetheretherketone)	Pass	Pass	Pass	Pass	Pass	Pass	
RTP 2200 A-Series Compounds (Polyetherketoneketone)	Pass	Pass	Pass	Pass	Pass	Pass	•
RTP 4000-Series Compounds (Polyphthalamide)	Pass	Pass	Pass	Pass	Pass	-	20
RTP Radel* R-7000 Series Compounds	Pass	Pass	Pass	Pass	Pass	N/A	Pass

RTP ACTIVE INTERIOR PROGRAMS **Commercial Aircraft** Stow Bin Brackets Seat Track Covers Trash Can • Rub & Trim Strips Seat Armrest - --- Galley Lavatory Components Toilet Seats Lighting • Floor Pan Flight Controls Oxygen Box Components PSU Rails HVAC/Air Handling Components Tray Table Arms Seat Actuation Components

RTP OVERVIEW

- Thermoplastic Flammability
 - Flame Retardant Additive Chemistries and Mechanisms
- Testing Standards
- · Aerospace Requirements
- Case studies

RTR APPLICATION EXAMPLE

Commercial Aircraft Stow-Bin Brackets

Features:

- High Stiffness
- Chemical Resistance
- FST & OSU 65/65 Compliance

Benefits:

- Metal-to-Plastic Conversion
- Lightweight
- Reduced Manufacturing Cost

- PEEK
- Glass Fiber
- Colored

APPLICATION EXAMPLE

Lavatory Components

RTP 299 D X 130507 A White & Gray

- Nylon 6/12
- Non-Halogen FR
- Color Matched

Specifications

- 12 second vertical burn
- Smoke Density
- Smoke Toxicity

RTR FR MEETS OUTDOORS / UV

Market

Consumer

Application

Marine Connector

Problem

Strength/Impact, UV Resistance, Specialty color, UL94 V-0, F1

Solution

PC/PBT – Glass reinforced, UV stabilized, Flame retardant

Benefit

Product was able to pass the required drop impact testing and stringent UL outdoor and flammability ratings

