

RTP COMPANY OVERVIEW

PRODUCT FAMILIES

RTP Company provides compounds for the healthcare industry across all product families

Structural

Wear Resistant

Sheet - ESP™

COLOR

Color technologies add function and aesthetics to healthcare applications

- · Color for identification
- · Laser marking for Unique Device Identifier (UDI)
- Laser welding for joining parts with hermetic seals

COLOR

Custom Precolors

- RTP Company's Color Lab has capabilities to match samples,
 Pantone selections, or many other color standards
- This ensures colors of the compound match marketing materials
- Can usually be combined with other technologies (Wear, Structural, TPE, etc.)

5

COLOR

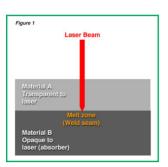
Color for Identification

- Allows for quick and easy differentiation of components
- Examples
 - Test tube caps
 - Surgical sizers

COLOR

Laser Marking

- Laser marking pigment works in nearly all polymer systems
- Can laser mark light marks on dark surfaces or dark marks on light surfaces
- Used for UDI (Unique Device Identifier) codes
- Can be used to replace labels or printed text that could easily wear off

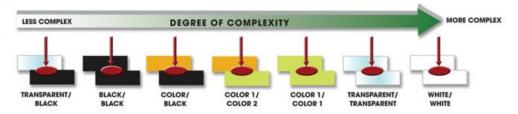


7

COLOR

Laser Welding

- Two parts (IR Transparent & IR Absorbing) combined through laser melting along the weld seam.
- Can be used to create hermetic seals



COLOR

Laser Welding

- Beneficial when other joining techniques are not viable
 - Ultrasonic welding near electrical components
 - · Contamination from glues or adhesives

a

STRUCTURAL

Broad use technologies for healthcare

- Non-FR housings
- Patient mobility devices (beds, wheelchairs)
- Radiopaque surgical tools

Radiopacity

- For use in surgical devices that need to appear on an x-ray
- For use as an x-ray shield to prevent unintended damage
 - · Can be used to replace lead
- Amount of additive can be tuned for wall thickness to achieve the desired radiodensity.

11

STRUCTURAL

Radiopacity

- Barium Sulfate
 - · Widely used radiopaque additive
 - Cost effective
 - Colorable
 - USP grades available
- · Bismuth Compounds
 - · Higher density than BaSO4
 - · Brighter/higher contrast & sharper image
- Tungsten
 - · Twice as dense as Bismuth, high level of radiopacity
 - · Raw material is dark gray, color limitations
 - · Cost considerations

Cost Effective Chemical Resistance

- Historically PC/ABS
- Amorphous = poor chemical resistance
- High temp amorphous (PPSU) = High cost
- · Hospitals work to reduce infections
 - · More rigorous cleaning schedules

STRUCTURAL

Cost Effective Chemical Resistance

- Developed copolyester alloys
 - Amorphous
 - · Good chemical resistance
 - Lower cost than high temp polymers
- · Custom alloys on demand
 - Structural
 - FR

Cost Effective Chemical Resistance

- Developed an in-house test regime to compare performance of materials to a range of chemicals
- Continuing development focus in this area

Disinfectant	RTP 2000 HC Series	Standard PC/ABS
Birex [®] - Phenol	~	~
CaviCide 1 [®] - Alcohol	✓	×
Cidex Plus [®] - Glutaraldehyde	~	×
Incides N [®] - Alcohol	~	×
Incidin Plus [®] - Glucoprotamin	✓	×
Incidin Pro® - Alcohol	✓	×
Sani-Cloth Active® - Quarternary Compound	~	×
Sani-Cloth Bleach® - Chlorine	~	~
Sani-Cloth Plus [®] - Alcohol	~	×
Super Sani-Cloth® - Alcohol	~	×
T-Spray II [™] - Chlorine	/	×

15

STRUCTURAL

Sterilization - Ethylene Oxide (EtO) Gas

- Toxic gas
 - · Disposal considerations
- Polymers require chemical resistance

Not Recommended

- Some ABS grades (stress cracking)
- Some TPE grades

Most polymers are unaffected by EtO gas

Sterilization - Steam/Autoclave

- Commonly used for quick & easy disinfection
- · Used in healthcare facilities
- 30-minute cycles at 121 Celsius
- Stress relaxation (annealing) can occur

Not Recommended

- ABS/Polystyrene
- Polyesters (PET, PBT)

Fair - Good

- Nylon
- Polycarbonate
- Polypropylene

Best

- PPSU
- PEEK

17

STRUCTURAL

Sterilization - High Energy Radiation

- · Gamma & E-Beam
- · Damages polymers via:
 - Chain scission
 - Crosslinking
- · Cumulative Damage
- Can be both mechanically and visually damaging

Not recommended

- Acetal
- PTFE

Stabilization Required

- Polypropylene
 - Color & Impact
- Polycarbonate
 - Color

Good (<80 kGy)

- Polyethylene*
- Liquid crystal polymer
- Polysulfones

Sterilization – Vaporized Hydrogen Peroxide (VHP)

- · Low temperature process
- Broader range of polymer compatibility compared to steam
- Some chemical resistance is needed
- Uptick due to constraints in EtO capacity

Not Recommended (Some Cycles)

- Polyurethane
- Nylon
- Acetal

Limited after repeat sterilization

- Nylon
- Acetal
- PMMA

Best (Multiple Cycles)

- PPSU (200+ Cycles)
- PEEK (200+ Cycles)
- PEI (300+ Cycles)

19

THERMOPLASTIC ELASTOMERS (TPE)

Provides soft-touch over molded surfaces in addition to standalone devices

- tubing
- · catheters
- grips (toothbrushes, razors, surgical tools)
- seals
- vial closures
- drug delivery or monitoring patches
- connectors

THERMOPLASTIC ELASTOMERS (TPE)

Medical TPE Portfolio - All tested to ISO 10993 -5, -10, -11

RTP 2700 S MD

- SBC Technology
- Highly Elastic
- Translucent/PP Bondable
- Durometers 30A 80A

Polabond® 6042 MD

- Alloy Technology
- PC, PC Alloys and ABS substrate bondable
- · Haptics/Tensile/Tear
- Durometers 40A 70A

Polabond® 6003 MD

- Alloy Technology
- · PBT and PMMA substrate bondable
- Functional Elasticity
- Durometers 45A, 55A and 75A

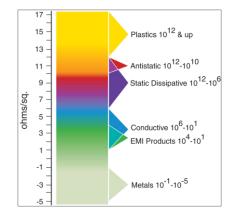
21

THERMOPLASTIC ELASTOMERS (TPE)

Lubricity

- We can modify TPE alloys to shift between a 'tacky' feel and a 'silky' feel.
- Wear & Friction additives can be added to increase lubricity
 - Silicone
 - · PFPE (Perfluoropolyether) Oil
 - PTFE

CONDUCTIVE

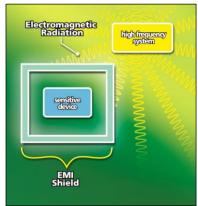

Provides antistatic, static dissipative, and EMI shielding

performance

Pipette tips

Dry powder drug delivery

• EMI shielding for housings



23

CONDUCTIVE

Electromagnetic Interference (EMI) Shielding

 EMI shields protect sensitive devices from high frequency sources in the area.

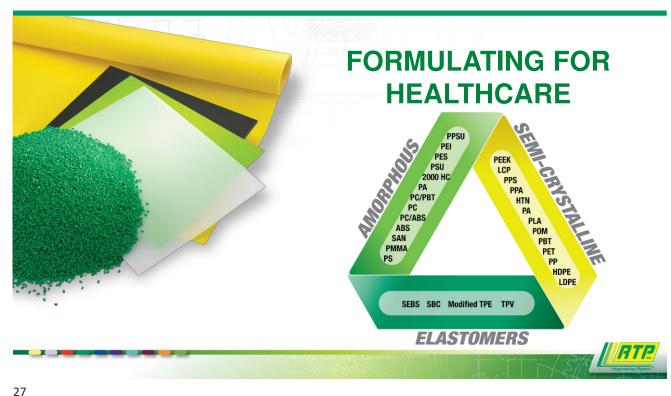
CONDUCTIVE

Electromagnetic Interference (EMI) Shielding

Stainless Steel Fiber

- 8 µm Diameter
- 302 Tool Steel
- Very Flexible

25


CONDUCTIVE

Electromagnetic Interference (EMI) Shielding

- Pre-blended mix of pellets
- · Necessary to retain aspect ratio
- Evenly dispersed during molding
- SSF loading up to 20%
- · Colors Possible

FORMULATING FOR HEALTHCARE

Why the need?

- RTP Company has a broad portfolio of plastics and additives for the healthcare industry
- Not all raw material suppliers support healthcare applications equally.
 - · The responses ensure the proper suppliers and controls are in place
- Having this information up front helps to ensure there are no hurdles or setbacks from raw materials as the program progresses
 - Partnering with RTP Company can help offer guidance on new applications

FORMULATING FOR HEALTHCARE

RTP Company Healthcare Application Questionnaire

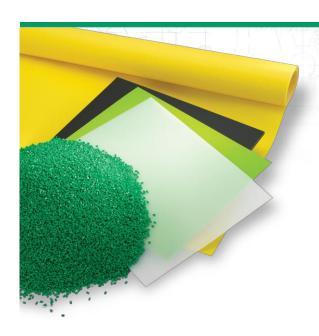
- Online, interactive questionnaire
- Helps us categorize your application
- Ensures we comply with our suppliers' policies
- Can be filled out by anyone knowledgeable about the application

29

FORMULATING FOR HEALTHCARE

RTP Company Healthcare Application Questionnaire

- Short and simple questionnaire intended to gather critical regulatory information.
 - · Device Classification
 - US I, II, or III
 - Patient Contact Duration
 - · Transient Less than 24 hours
 - Temporary 24 hours to 29 days
 - Permanent 30 days or longer
 - Biocompatibility Testing


SUMMARY

Technology + Control

- RTP Company has several product technologies that can be implemented across nearly all polymer systems for the healthcare market
- We have the capability to offer custom control schemes on formulations to fit your application

31

THANK YOU!

Questions?

Bryan Gathman
bgathman@rtpcompany.com

rtpcompany.com

024 RTP Company