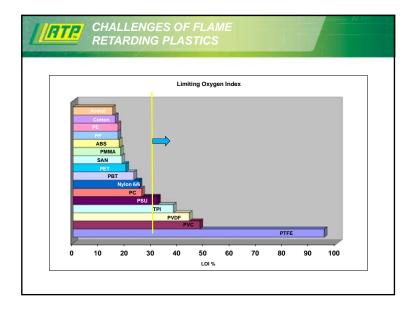
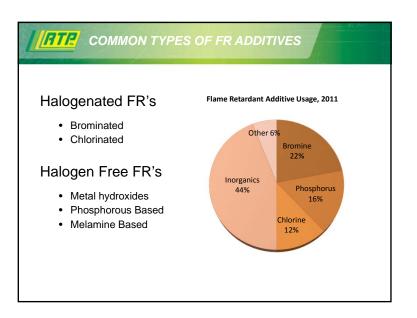
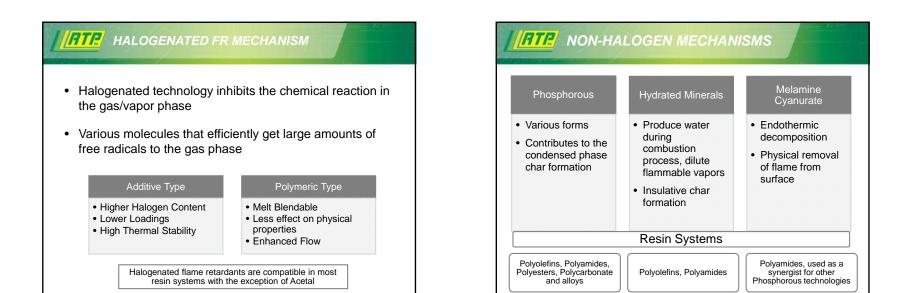

GOALS OF FLAME RETARDANT

- Increase resistance to ignition
- Reduce rate of flame spread
- Reduce rate of heat release
- Reduce smoke emission


End Goal:


- Meet FR specifications
- Make the world a safer place!



RTP RTP OVERVIEW FLAMMABILITY • Thermoplastic Flammability Inherently Flame Flammable Resistant • Flame Retardant Additive Chemistries and Mechanisms Regulatory Landscape • Polysulfones Polyolefins • Polyphenylene Sulfide Nylons • Testing Standards • Polyetheretherketone • Polycarbonate • Polyetherimide • Polyesters Case studies • Flouropolymers • Styrenics • TPEs Hospital Cleaner Resistant Technology

Halogenated	Halogen Free
Lower Cost	Evolving Economics
Better Processing	Improved Processability
Better Efficiency	Wide Variety of Products
Better Physical Properties	Low Smoke
	Lower Toxicity
	Less Corrosive
	Lower Specific Gravity

CHOOSING A FR SYSTEM Halogen, RoHS, etc

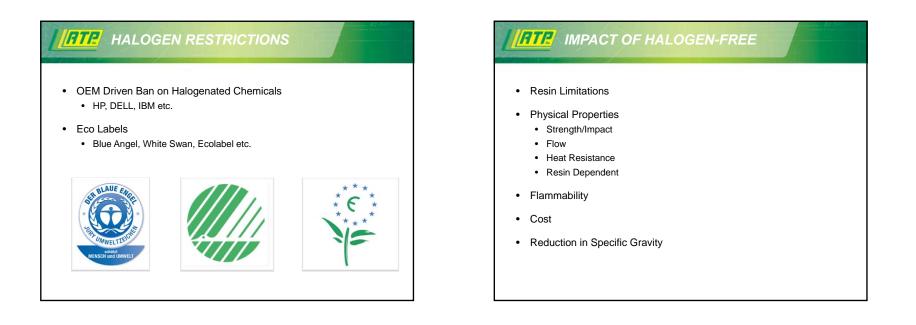
RTP OVERVIEW

- Thermoplastic Flammability
 - Flame Retardant Additive Chemistries and Mechanisms
- Regulatory Landscape
- Testing Standards
- Case studies
- Hospital Cleaner Resistant Technology

ROHS DIRECTIVE

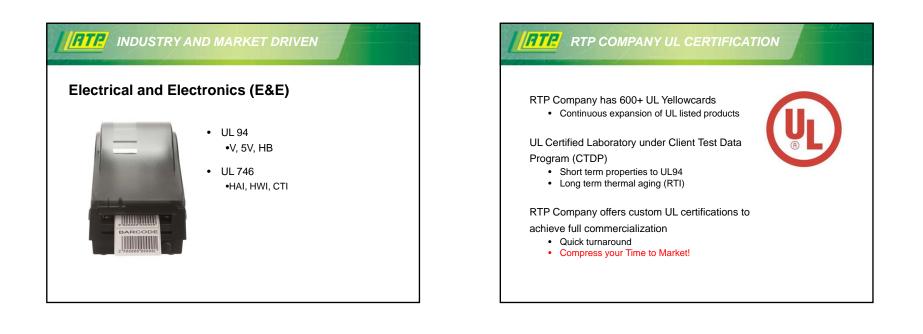
- Restriction of Hazardous Substances (RoHS)
 EU Directive in effect as of July 2006
- Banned Substances
 - Lead (Pb)
 - Mercury (Hg)
 - Cadmium (Cd)
 - Hexavalent Chromium (CrVI)
 - Polybrominated Biphenyls (PBB) and Polybrominated Diphenyl Ethers (PBDE)
- Flame Retardants and Pigments

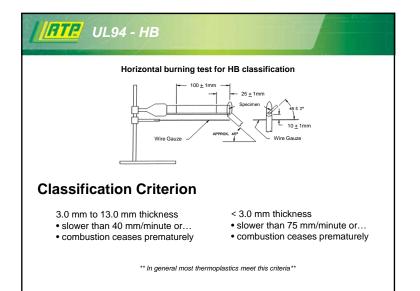
Does not need to be Halogen Free!

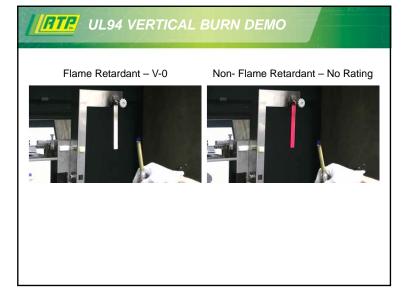

RTP. IMPACT OF ROHS

How does RoHS compliance affect material selection?

- Drop in replacements available
- Identical Properties
 - Physical, Flow, Heat Resistance, Processability
- Cost Premium


EVOLUTION OF HALOGEN-FREE TECHNOLOGIES


- More "self-policing"/customer driven bans
- New FR standards
- Green Movement
- More Effective/Economical FR Chemicals
- Increased Performance
- · Competition in the Market


Mechanical Properties	RTP 205 FR	RTP 205 FR Halogen Free
Tensile Strength, psi	21000	19500
Tensile Modulus, psi E6	1.65	1.45
Tensile Elongation, %	2-4%	2-4%
Flexural Strength, psi	33000	31500
Flexural Modulus, psi E6	1.55	1.45
Impact Notched, ft-lb/in	2	1.8
Impact Un-notched, ft-lb/in	16	16
HDT @ 264 psi	470	470
Specific Gravity	1.66	1.41
Flammability	V-0 @ 1/32	V-0 @ 1/32

RTP. OVERVIEW
 Thermoplastic Flammability
Flame Retardant Additive Chemistries and Mechanisms
Regulatory Landscape
Testing Standards
Case studies
Hospital Cleaner Resistant Technology

				1
Classification Criteria	V-0	V-1	V-2	
Number of bar specimens	5	5	5	20 ± 1 mm - 10 ± 1 n
Maximum flame time per specimen per flame application, sec	10	30	30	Burner 300 ± 10 mm
Maximum total flame time 5 specimens, 2 ignitions, sec	50	250	250	Cotton 6 mm max.
Specimen drips, ignites cotton	NO	NO	YES	
Maximum afterglow time per specimen, sec	30	60	60	
Burn to holding clamp	NO	NO	NO	

AEROSPACE

FAR 25.853

- Flammability:
 - 15-Second Horizontal Burn
 - 12-Second Vertical Burn
 - 60-Second Vertical Burn
- Smoke Density:
 - Ds@4min <200
 ABD0031 or BSS 7238 or ASTM E-662
- Ohio State University Heat
- Release:
- Calorimetry Test Measures
 Peak and Total Heat Release
- <100/100, <65/65, & <55/55 are common

Requirements vary by part size and location

OEM Driven Requirements

- Toxic Gas Emission:
 - Varies by OEM
 - ABD0031 or BSS 7239

Requirements vary by part size and locatio

RTP. BUILDING / INDUSTRIAL

- Requirements focus on:
 - Low Smoke, Heat Release, Burn Rate, Flame Spread
- Various standard that apply:
 - UL2043, UL723/ASTM E84, ASTM E1354, NFPA 701, FM 4996, CAL TB133

Applications:

Wall coverings, Furniture, Plenum, Pallets, Storage systems, Roofing, Floor coverings, Ventilation

RECAP

Designing for an FR application

- Regulatory Landscape
 RoHS, Halogen Restrictions
- Specifications
 - UL94, FAR, ASTM, etc.
 - Part Function

 Performance Requirements, Application Environment, etc.
- Economics

٠

Price is a Property

RTR OVERVIEW

- Thermoplastic Flammability
 - Flame Retardant Additive Chemistries and Mechanisms
- Regulatory Landscape
- Testing Standards
- Case studies
- Hospital Cleaner Resistant Technology

RTP. FR M	EETS TRANSPARENCY
LED Lens Cover	
Market:	Consumer
Problem:	UL 94 V-0, High Light Transmission, UV, Light Diffusion, RoHS Compliance
Solution:	PC – Transparent, Flame retardant, Specialty pigment package
Benefits:	Provided ample diffusion of high powered LED lights with a proprietary pigment technology while achieving the required flame performance

Marine Connector	
Market:	Consumer
Problem:	Strength/impact, UV resistance, specialty color, UL94 V-0, F1
Solution:	PC/PBT – Glass reinforced, UV stabilized, Flame Retardant
Benefits:	Product was able to pass the required drop impact testing and stringent UL outdoor and flammability ratings

FR BREAKS THROUGH THE CEILING Speaker Unit Market: Industrial Problem: Plenum location, UL 2043, UL94 5VA, Rigidity Polypropylene – Glass fiber reinforced, Halogen Solution: free Flame Retardant Provided structural requirements needed for Benefits: function and stringent UL flame resistance

BTP OVERVIEW

- Thermoplastic Flammability
 - Flame Retardant Additive Chemistries and Mechanisms
- Regulatory Landscape
- Testing Standards
- Case studies
- Hospital Cleaner Resistant Technology

RTR PROBLEM STATEMENT

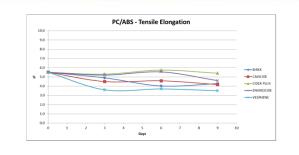
Hospital Acquired Infections

- 2,000,000 new cases per year (USA)
- 100,000 deaths per year (USA)
- \$11 Billion additional cost (USA)
- Global trend

Costs have been driven back to healthcare providers

ATR PROBLEM STATEMENT

- Added costs have led to an increase in cleaner usage and frequency
- Harsh chemicals causing failures in plastic housings


RTP RISING TO THE CHALLENGE

Product Development Criteria

- Increased chemical resistance to healthcare cleaners vs. traditional housing materials
 - PC/ABS, PC/PBT, ABS, PC, PC/ASA
- High Impact/Ductility
- Good dimensional stability with shrinkage similar to PC/ABS
- Colorable
- Flame retardant grade for electronic housings

TEST METHOD EVALUATION

- Nine day soak test showed no change in physical properties
- Most field failures are seen in areas where stress is applied
- · Need a test method that replicates field failures

Exposure @ 1% strain Patch method Saturate patch every 24 hours Air dry Test physical properties after exposure (96 hours)

Test replicated field failures and relative resistance

CHEMICAL CLASSESWide variety of chemical cleaners used to help avoid
ta spread of hospital acquired infections:Image: Image: Ima

RTP CHEMICAL CLASSES STUDIED

Base Chemical Class	Typical Brand Names
Alkylamine	T-Spray II
Glutaraldehyde	Cidex Plus
Glucoprotamin	Incidin Plus
Phenol	Birex
Quaternary compound	Sani-Cloth AF3 Sani-Cloth Active
Chlorine releasing compound	Sani-Cloth Bleach Clorox
Alcohol	CaviCide 1 Super Sani-Cloth Sani-Cloth Plus Incides N Incidin Pro

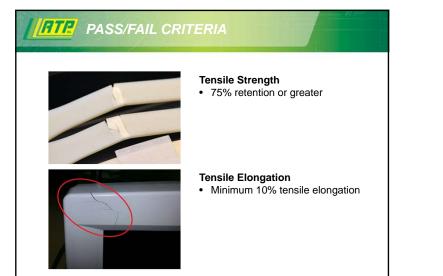
Disinfectant Examples:

- Wipes/cloth
- Liquid sprays

RTP Continues Testing

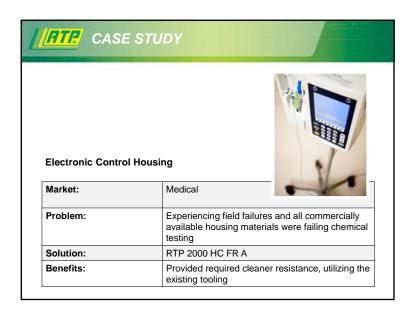
- Provide a sample
- Will report results

RTR CHEMICALS TESTED


Cleaning Agent	Base Chemical Class	
Birex	Phenol	
CaviCide 1	Isopropanol / Ethanol	
Cidex Plus	Glutaraldehyde	
Incides N	Propanol	
Incidin Plus	Glucoprotamin / Ethanol	
Incidin Pro	Alkylamine / Ethanol	
Sani-Cloth Active	Quaternary compound	
Sani-Cloth Bleach	Chlorine releasing compound	
Sani-Cloth Plus	Isopropanol / Ethanol	
Super Sani-Cloth	Isopropanol	
T-Spray II	Alkylamine	

RTR DEVELOPMENT

- Numerous compositions screened for physical property and chemical resistance
 - Over a dozen polymers tested
 - Extensive alloy testing
- Proprietary polyester alloy was proven as best performer
- Alloy was optimized for physicals, chemical resistance and flame performance


Introducing RTP 2000 HC series:

RTP TENSILE STRENGTH Cleaner RTP 2000 HC FR A FR PC/ABS FR PC/PBT ✓ ✓ T-Spray II × ✓ ✓ Cidex Plus × ✓ Incidin Plus × × ✓ ✓ ✓ Birex ✓ 1 Sani-Cloth Active × ✓ ✓ ✓ Sani-Cloth Bleach CaviCide 1 ✓ × × Super Sani-Cloth ✓ ✓ ✓ Sani-Cloth Plus ✓ × x ✓ Incides N ✓ ✓ ✓ Incidin Pro × ×

TENSILE ELONGATION				
Cleaner	RTP 2000 HC FR A	FR PC/ABS	FR PC/PBT	
T-Spray II	1	×	✓	
Cidex Plus	✓	×	✓	
Incidin Plus	✓	×	×	
Birex	✓	1	✓	
Sani-Cloth Active	✓	×	×	
Sani-Cloth Bleach	1	1	✓	
CaviCide 1	1	×	×	
Super Sani-Cloth	✓	×	✓	
Sani-Cloth Plus	1	×	×	
Incides N	✓	×	1	
Incidin Pro	✓	×	×	

RTR CONCLUSIONS

- RTP 2000 HC offers resistance to healthcare cleaners
 - Available in UL94 V-0/5VA grade
 - Physical properties well suited for housings
 - Dimensional stability
 - Similar molding conditions in existing tooling (PC/ABS, PC/PBT, ABS, PC, PC/ASA)
 - Fully colorable
- · Available for immediate sampling/testing

