

Amorphous vs. Semi-Crystalline YOUR GLOBAL COMPOUNDER OF CUSTOM ENGINEERED THERMOPLASTIC	
Random Structure	Ordered Structure
Broad Melting Point	Sharp Melting Point
Often Solvent Sensitive	Solvent Resistant
Impact Resistant	Fatigue Resistant
Low Shrink	High Shrink
Better Dimensional Stability	More Difficult Dimensional Control

FEA of Filled Polymers

Recommendations:

When possible do analysis that considers fiber orientation – Moldflow followed by FEA

For FEA that doesn't use flow simulation inputs, use 60-80% of the modulus/strength to account for property variations

Viscosity of Polymers

Plastics are non-Newtonian

Viscosity varies not only with temperature but with shear rate

What is Shear Rate?

Shear: Friction between moving plastic and the mold wall

Shear Rate: Velocity gradient

in a flowing material

- Hesitation/Partialling
- Air/Gas Traps
- Weld Lines
- Warpage
- Sinks and Voids
- Structural Weakness or Failure

- Constant nominal wall simplifies fill pattern
- Constant nominal wall minimizes stresses and warp
- Avoid gating near areas with large variation

- Material Issues/Concerns with Structural Composites
- Part Design Guidelines Common Mistakes
- Warpage
- Structural Failures

Warpage

Shrinkage itself doesn't cause warp

Warp is caused by variations in shrinkage

Three Primary Causes

- 1. Non-uniform Cooling
- 2. Orientation Effects
- 3. Differential Area Shrinkage

When the mold is hotter on one side than on the other side, the hotter side will take longer to cool so it will shrink more

- The primary cause of the warp is orientation due to a non-uniform fill pattern
- A different gate location will not improve the fill pattern or improve orientation warp
- Reducing the warp will require either major part design changes or a material change

Design to Avoid Orientation Effects YOUR GLOBAL COMPOUNDER OF CUSTOM ENGINEERED THERMOPLASTICS

- Uniform wall thickness to allow simple fill pattern
- No major thin sections that could result in hesitation or racetracking

Reducing Orientation Effects YOUR GLOBAL COMPOUNDER OF CUSTOM ENGINEERED THERMOPLASTICS

- · Gate for the most uniform flow
- Adjust molding conditions (often higher temps and faster injections will help)
- Adjust wall thickness
- Use more uniformly shrinking material (or sometimes a lower viscosity material)

Differential Area Shrinkage

- Variations in <u>cooling rate</u> result in variations in shrinkage
- Slower cooling results in higher crystallinity and more shrink
- Faster cooling results in less crystallinity and less shrink

Differential Area Shrinkage YOUR GLOBAL COMPOUNDER OF CUSTOM ENGINEERED THERMOPLASTICS

- Thick walls take longer to cool than thin walls resulting in non-uniform shrink
- More densely packed areas take longer to cool resulting in non-uniform shrink

Conclusions

 The primary cause of the warp is differential shrinkage due to wall thickness variations

- A different gate location will improve the fill pattern but it will not improve differential shrinkage warp
- Wall thickness changes and packing pressure profiles may reduce warp

Part Design to Avoid Differential Shrinkage

- Uniform wall thickness to allow uniform cooling rate
- Balance thin ribs onto both sides of nominal wall

Reducing Differential Area Shrinkage

- · Uniform wall thickness
- Lower shrink materials
- Adjust the wall thickness/rib structure
- · Packing profile during molding
- Tooling inserts such as beryllium copper
- Move gate to allow packing of thick areas

What We Will Cover

YOUR GLOBAL COMPOUNDER OF CUSTOM ENGINEERED THERMOPLASTIC

- Material Issues/Concerns with Structural Composites
- Part Design Guidelines Common Mistakes
- Warpage
- Structural Failures

Mechanical failures happen when the loading of the part exceeds the capability of the material in a specific area

Common Structural Failures

- Stress concentrators (such a sharp edges or corners)
- Weld lines
- Poor fiber orientation
- · Poor properties due to voids
- Wrong material

- Work with material supplier
- Radius corners and edges
- Thicker is not always better
- Gate to allow flow that orients fiber in the principal direction of the structural load

- Draft
- Surface Finish
- Undercuts
- Venting

- Understand your material needs and understand the material
- Design parts with relatively uniform wall thickness
- · Keep the fill pattern simple

