

THERMOPLASTIC ELASTOMERS • STRUCTURAL • WEAR

CONDUCTIVE • COLOR • FLAME RETARDANT

Tough or Strong? Short or Long? Dialing in Mechanical Properties

Karl Hoppe Senior Product Development Engineer

RTP Company Corporate Headquarters • 580 East Front Street • Winona, Minnesota 55987 USA website: www.rtpcompany.com • email: rtp@rtpcompany.com • Wiman Corporation • + | 320-259-2554 TELEPHONE:

U.S.A. +1507-454-6900

SOUTH AMERICA +55 11 4193-8772 MEXICO

EUROPE +52 81 8134-0403 +33 380-253-000

SINGAPORE +65 6863-6580

CHINA +86 512-6283-8383

Stiffness

Impact

Structural Composites Formula

FTP Structural Additives: Foundation

In this Presentation

Modifiers

YOUR GLOBAL COMPOUNDER OF CUSTOM ENGINEERED THERMOPLASTICS

Polymer Blends Impact Modifiers

YOUR GLOBAL COMPOUNDER OF CUSTOM ENGINEERED THERMOPLASTICS

ABS brings

- Improved flow
- Chemical resistance
- Cost reduction

PP brings

- Improved flow
- Chemical resistance
- Cost reduction

PBT brings

- Improved flow
- Chemical Resistance

YOUR GLOBAL COMPOUNDER OF CUSTOM ENGINEERED THERMOPLASTICS

PC brings

- Toughness
- Strength

Nylon brings

- Strength
- Stiffness

PC brings

- Toughness
- Dimensional stability

	PC	PC/ABS (RTP 2500 A)	ABS
Specific Gravity	1.19	1.15	1.05
Tensile Strength	59 MPa	59 MPa	45 MPa
Notched Izod Impact	850 J/m	740 J/m	250 J/m

YOUR GLOBAL COMPOUNDER OF CUSTOM ENGINEERED THERMOPLASTICS

Application: Housing for Hearing Tester

Problem: Toughness and chemical

resistance

Solution: Polycarbonate/ABS Alloy

Benefit: Strength and toughness of PC

with the added chemical

resistance of ABS

Modifiers

YOUR GLOBAL COMPOUNDER OF CUSTOM ENGINEERED THERMOPLASTICS

Impact properties

Impact Modifiers

Impact Modifiers

	PA 6/6	Impact Modified PA 6/6
Specific Gravity	1.14	1.08
Notched Izod Impact	55 J/m	900 J/m
Tensile Strength	80 J/m	45 J/m
Flexural Modulus	2.8 GPa	1.8 GPa

Impact Modified

YOUR GLOBAL COMPOUNDER OF CUSTOM ENGINEERED THERMOPLASTICS

Application: Housing for Wireless

Workstation

Problem: Toughness and abrasion

resistance

Solution: Impact Modified PA 6/6

Benefit: Wear and abrasion

resistance of Nylon 6/6

with added toughness

from impact modifier

Impact Modifiers

Modifiers

Stabilizers

- Protect from
 - UV
 - Heat aging

Hindered Amine Light Stabilizers (HALS)

 Protects polymer by stopping degradation reactions once they have started

UV Absorbers

 Protects polymer by absorbing harmful UV light before the degradation reaction has started

UV Stabilization Data

YOUR GLOBAL COMPOUNDER OF CUSTOM ENGINEERED THERMOPLASTICS

30% Long Fiber (VLF) PP

Heat Stabilization

YOUR GLOBAL COMPOUNDER OF CUSTOM ENGINEERED THERMOPLASTICS

Heat stabilizers come in many forms

- Slow down the degradation reactions of the polymer caused by heat
- Can be for process stability or Long Term Heat Aging (LTHA)

Heat Stabilization Data

YOUR GLOBAL COMPOUNDER OF CUSTOM ENGINEERED THERMOPLASTICS

40% VLF PP 1000 Hour Heat Aging

Temperature	Tensile Retention	Izod Impact Retention
140°C	+5.7%	+9.9%
150°C	-4.7%	-11.3%

Typical Automotive requirements are ~+/- 25%

In this Presentation

Beads (Glass)
(photo: Potters, Inc.)

Minerals (Talc)

Fibers (Glass)

Low Aspect Ratio

YOUR GLOBAL COMPOUNDER OF CUSTOM ENGINEERED THERMOPLASTICS

Beads (Glass)
(photo: Potters, Inc.)

Aspect Ratio = 1

	PC	PC + 10% Glass Beads	PC + 30% Glass Beads
Specific Gravity	1.19	1.27	1.42
Tensile Strength	59 MPa	55 MPa	48 MPa
Notched Izod Impact	850 J/m	100 J/m	80 J/m
Flexural Modulus	2.4 GPa	2.6 GPa	3.4 GPa

Low Aspect Ratio

YOUR GLOBAL COMPOUNDER OF CUSTOM ENGINEERED THERMOPLASTICS

Minerals (Talc)

Aspect Ratio = 2-50

	PP	PP + 20% Talc	PP + 40% Talc
Specific Gravity	0.91	1.05	1.25
Tensile Strength	32 MPa	32 MPa	30 MPa
Notched Izod Impact	47 J/m	45 J/m	34 J/m
Flexural Modulus	1.5 GPa	2.5 GPa	3.8 GPa

Warp Control

YOUR GLOBAL COMPOUNDER OF CUSTOM ENGINEERED THERMOPLASTICS

Shrink Rate x = Shrink Rate y - Flat Part

Low Aspect Ratio

YOUR GLOBAL COMPOUNDER OF CUSTOM ENGINEERED THERMOPLASTICS

Application: Reusable Handling Container

Problem: Dimensional stability

Solution: Mineral filled Polypropylene

Benefit: Low warpage

High Aspect Ratio

YOUR GLOBAL COMPOUNDER OF CUSTOM ENGINEERED THERMOPLASTICS

Fibers (Glass)

Aspect Ratio = 50-250

	PC	PC + 30% Glass Beads	PC + 30% Glass Fiber
Specific Gravity	1.19	1.42	1.42
Tensile Strength	59 MPa	48 MPa	124 MPa
Notched Izod Impact	850 J/m	80 J/m	160 J/m
Flexural Modulus	2.4 GPa	3.4 GPa	7.6 GPa

High Aspect Ratio

YOUR GLOBAL COMPOUNDER OF CUSTOM ENGINEERED THERMOPLASTICS

Fibers (Glass)

Aspect Ratio = 50-250

	PP	PP + 40% Talc	PP+ 40% Glass Fiber
Specific Gravity	0.91	1.25	1.22
Tensile Strength	32 MPa	30 MPa	85 MPa
Notched Izod Impact	47 J/m	34 J/m	108 J/m
Flexural Modulus	1.5 GPa	3.8 GPa	6.9 GPa

High Aspect Ratio

YOUR GLOBAL COMPOUNDER OF CUSTOM ENGINEERED THERMOPLASTICS

Application: Surgery Drill Guide

Problem: Stiffness and

dimensional stability

Solution: Glass fiber reinforced

Polycarbonate

Benefit: Rigidity and tight

tolerances

Non-Uniform Shrink = Warp

YOUR GLOBAL COMPOUNDER OF CUSTOM ENGINEERED THERMOPLASTICS

Shrinkage X1 & X2 ≠ X3 → Warp

Strength & Warp Control

YOUR GLOBAL COMPOUNDER OF CUSTOM ENGINEERED THERMOPLASTICS

Shrinkage X1 = X2 = X3 — Flat Part

VLF Manufacturing Process

YOUR GLOBAL COMPOUNDER OF CUSTOM ENGINEERED THERMOPLASTICS

Fiber Extruder/Die Puller Pelletizer

Extreme Aspect Ratio

YOUR GLOBAL COMPOUNDER OF CUSTOM ENGINEERED THERMOPLASTICS

Long Glass Fiber

Aspect Ratio = 300+

	PP+ 40% Short Glass	PP + 40% Long Glass
Specific Gravity	1.22	1.22
Tensile Strength	85 MPa	118 MPa
Notched Izod Impact	108 J/m	228 J/m
Flexural Modulus	6.9 GPa	7.7 GPa

Extreme Aspect Ratio

YOUR GLOBAL COMPOUNDER OF CUSTOM ENGINEERED THERMOPLASTICS

Short Fiber

Long Fiber

Fiber Length

~ 1-2 mm

12 mm

FTP Secret to Success: The Skeleton

Polyamide 6/6 – 40% Glass Fiber

High Aspect Ratio

YOUR GLOBAL COMPOUNDER OF CUSTOM ENGINEERED THERMOPLASTICS

Carbon Fibers

Aspect Ratio = 50-250

	PEEK	PEEK + 40% Glass Fiber	PEEK + 40% Carbon Fiber	
Specific Gravity	1.30	1.61	1.45	
Tensile Strength	93 MPa	186 MPa	265 MPa	
Notched Izod Impact	53 J/m	133 J/m	91 J/m	
Flexural Modulus	3.8 GPa	13.8 GPa	30.3 GPa	

High Temperature Application

YOUR GLOBAL COMPOUNDER OF CUSTOM ENGINEERED THERMOPLASTICS

Application: Brake Rotor Measuring

Probe

Problem: Casting replacement

Solution: Carbon fiber reinforced

PPA

Benefit: High strength and

stiffness

High Temperature Polymers

YOUR GLOBAL COMPOUNDER OF CUSTOM ENGINEERED THERMOPLASTICS

Δ	m	\cap	rn	h	\cap	us
		U			U	$\mathbf{u}\mathbf{z}$

Polyetherimide (PEI)

Polyethersulfone (PES)

Polysulfone (PSU)

Polycarbonate (PC)

Acrylonitrile Butadiene Styrene (ABS)

Styrene Acrylonitrile (SAN)

Polystyrene (PS)

High Impact Polystyrene (HIPS)

Acrylic (PMMA)

Semi-Crystalline

Polyetheretherketone (PEEK)

Polyphenylene Sulfide (PPS)

Polyphthalamide (PPA)

Polyethylene Terephthalate (PET)

Polybutylene Terephthalate (PBT)

Polyamide (PA/Nylons)

Acetal (POM)

Polypropylene (PP)

Polyethylene (HDPE, LDPE, LLDPE)

High Performance

Engineering

Qo

Cost Increases

Commodity

Chemical Structure

YOUR GLOBAL COMPOUNDER OF CUSTOM ENGINEERED THERMOPLASTICS

Polyethylene

Amorphous Materials

YOUR GLOBAL COMPOUNDER OF CUSTOM ENGINEERED THERMOPLASTICS

Flexural Modulus Vs. Temperature

Semi-Crystalline Materials

YOUR GLOBAL COMPOUNDER OF CUSTOM ENGINEERED THERMOPLASTICS

Flexural Modulus Vs. Temperature

Elevated Temp Properties

YOUR GLOBAL COMPOUNDER OF CUSTOM ENGINEERED THERMOPLASTICS

Multiple Temperature Tensile Stress/Strain

High Temperature Application

YOUR GLOBAL COMPOUNDER OF CUSTOM ENGINEERED THERMOPLASTICS

Application:Copier Bushings

Problem:High temperature (>445°F)

Solution: Aramid fiber reinforced TPI

Benefit:Wear resistance

Flexural Modulus

Impact - Izod Notched

TR High Temperature Applications

YOUR GLOBAL COMPOUNDER OF CUSTOM ENGINEERED THERMOPLASTICS

Application: Multiple Components on V-22 Osprey

Problem: Environment

Solution: Carbon fiber reinforced TPI and PEEK

Benefit: Flame retardant, temperature resistance, strength/stiffness

Tensile Strength

Tensile Strength

Modifiers

- Polymer Blends: overcome morphology deficiencies
- Impact Modifiers: increase impact but reduction in strength/stiffness
- Stabilizers: protect polymer

Fillers

- Performance driven by aspect ratio
- Very Long Fiber: increases impact and retains stiffness/ strength

• High Temperature

- Wide range of polymers with varying performance
- Understanding environment and stress levels is key to success

THERMOPLASTIC ELASTOMERS • STRUCTURAL • WEAR **CONDUCTIVE • COLOR • FLAME RETARDANT**

Questions?

Karl Hoppe khoppe@rtpcompany.com

RTP Company Corporate Headquarters • 580 East Front Street • Winona, Minnesota 55987 USA website: www.rtpcompany.com • email: rtp@rtpcompany.com • Wiman Corporation • +1 320-259-2554

TELEPHONE: U.S.A.

SOUTH AMERICA +1507-454-6900 +55 11 4193-8772

MEXICO +52 81 8134-0403 +33 380-253-000

EUROPE

SINGAPORE +65 6863-6580

CHINA +86 512-6283-8383